Lingling Huang, Yucheng Tian*, Fan Wu, Xia Yin*, Roman A. Surmenev, Jianyong Yu, Yi-Tao Liu and Bin Ding,
{"title":"Multiscale Pore-Structured Aerogel Fiber Metafabric for High-Performance Noise Reduction and Thermal Insulation","authors":"Lingling Huang, Yucheng Tian*, Fan Wu, Xia Yin*, Roman A. Surmenev, Jianyong Yu, Yi-Tao Liu and Bin Ding, ","doi":"10.1021/acsapm.5c0074810.1021/acsapm.5c00748","DOIUrl":null,"url":null,"abstract":"<p >The accelerated progress of modern transportation and urbanization has resulted in severe environmental noise pollution, imposing an adverse impact on economic productivity and public health. Concurrently, the synergistic challenges of waste heat accumulation and extreme low-temperature conditions present critical threats to equipment reliability. Hence, a unique strategy, based on dual air-gelation, is developed to synthesize an aerogel-structured fiber metafabric for noise reduction and thermal insulation directly. By modulating the interactions among polymers, solvents, and water, the interaction of charged jets can be facilitated, which in turn promotes rapid phase separation and the formation of a fibrous 3D network composed of aerogel fibers with internal nanopores (size 30–80 nm). Owing to the presence of micro/nano multiscale pore structure, aerogel fiber metafabric exhibits lightweight (6 mg cm<sup>–3</sup>) and elastic characteristics while also demonstrating excellent thermal insulation performance (28.58 mW m<sup>–1</sup> K<sup>–1</sup>) and sound absorption property (noise reduction coefficient of 0.57). Furthermore, the incorporation of hydrophobic agents and cross-linking agents endows superior mechanical property to the aerogel fiber metafabric (nearly 0% plastic deformation after 400 compression cycles) and hydrophobicity (water contact angle ∼134.3°). This work provides rich possibilities for the development of materials with both noise reduction and thermal insulation properties.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 10","pages":"6262–6271 6262–6271"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c00748","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The accelerated progress of modern transportation and urbanization has resulted in severe environmental noise pollution, imposing an adverse impact on economic productivity and public health. Concurrently, the synergistic challenges of waste heat accumulation and extreme low-temperature conditions present critical threats to equipment reliability. Hence, a unique strategy, based on dual air-gelation, is developed to synthesize an aerogel-structured fiber metafabric for noise reduction and thermal insulation directly. By modulating the interactions among polymers, solvents, and water, the interaction of charged jets can be facilitated, which in turn promotes rapid phase separation and the formation of a fibrous 3D network composed of aerogel fibers with internal nanopores (size 30–80 nm). Owing to the presence of micro/nano multiscale pore structure, aerogel fiber metafabric exhibits lightweight (6 mg cm–3) and elastic characteristics while also demonstrating excellent thermal insulation performance (28.58 mW m–1 K–1) and sound absorption property (noise reduction coefficient of 0.57). Furthermore, the incorporation of hydrophobic agents and cross-linking agents endows superior mechanical property to the aerogel fiber metafabric (nearly 0% plastic deformation after 400 compression cycles) and hydrophobicity (water contact angle ∼134.3°). This work provides rich possibilities for the development of materials with both noise reduction and thermal insulation properties.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.