Delicate Control over Electron Distribution and Water Dissociation Kinetics in Strongly Coupled Ru@NMoC Hybrid Catalyst Realizes Efficient Seawater Electrolysis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jintao Zhao, Jie Wang, Jixin Yao, Liang Li, Dongmeng Chen, Guang Li, Genqiang Zhang
{"title":"Delicate Control over Electron Distribution and Water Dissociation Kinetics in Strongly Coupled Ru@NMoC Hybrid Catalyst Realizes Efficient Seawater Electrolysis","authors":"Jintao Zhao, Jie Wang, Jixin Yao, Liang Li, Dongmeng Chen, Guang Li, Genqiang Zhang","doi":"10.1002/anie.202505031","DOIUrl":null,"url":null,"abstract":"Delicate control over electron distribution in hybrid catalysts is crucial for improving hydrogen evolution catalysis, which remains an aspirational target in advancing efficient hydrogen production. Herein, we optimize the local electronic structures and balance the reaction steps by incorporating Ru clusters into nitrogen-doped molybdenum carbide (denoted as Ru@NMoC), addressing performance limitations in alkaline seawater. The Ru@NMoC catalyst demonstrates ultra-low overpotentials of 8, 17, and 20 mV at 10 mA cm⁻² in 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH seawater, respectively, significantly outperforming conventional HER catalysts. Operando spectroscopic techniques reveal strong ability for interface water dissociation and stable local charge structure in Ru@NMoC. Theoretical simulations demonstrate that N-doping of Ru clusters self-optimizes their electronic states and lowering the energy barrier for water dissociation. Self-powered H2 production system can be achieved using Zn-H₂O batteries to drive anion exchange membrane water electrolysis cell, demoinstrating its practicability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"45 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Delicate control over electron distribution in hybrid catalysts is crucial for improving hydrogen evolution catalysis, which remains an aspirational target in advancing efficient hydrogen production. Herein, we optimize the local electronic structures and balance the reaction steps by incorporating Ru clusters into nitrogen-doped molybdenum carbide (denoted as Ru@NMoC), addressing performance limitations in alkaline seawater. The Ru@NMoC catalyst demonstrates ultra-low overpotentials of 8, 17, and 20 mV at 10 mA cm⁻² in 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH seawater, respectively, significantly outperforming conventional HER catalysts. Operando spectroscopic techniques reveal strong ability for interface water dissociation and stable local charge structure in Ru@NMoC. Theoretical simulations demonstrate that N-doping of Ru clusters self-optimizes their electronic states and lowering the energy barrier for water dissociation. Self-powered H2 production system can be achieved using Zn-H₂O batteries to drive anion exchange membrane water electrolysis cell, demoinstrating its practicability.
强耦合Ru@NMoC杂化催化剂中电子分布和水解离动力学的精细控制实现了高效的海水电解
杂化催化剂中电子分布的精细控制对于改善析氢催化是至关重要的,这仍然是推进高效制氢的理想目标。在此,我们通过将Ru团簇掺入氮掺杂碳化钼(表示为Ru@NMoC)来优化局部电子结构并平衡反应步骤,以解决碱性海水中的性能限制。Ru@NMoC催化剂在1 M KOH, 1 M KOH + 0.5 M NaCl和1 M KOH海水中表现出10 mA cm⁻²时的超低过电位,分别为8、17和20 mV,显著优于传统的HER催化剂。Operando光谱技术揭示了Ru@NMoC具有较强的界面水解离能力和稳定的局部电荷结构。理论模拟表明,钌簇的n掺杂使其电子态自优化,降低了水解离的能垒。采用Zn-H₂O电池驱动阴离子交换膜电解池,实现了自供电制氢系统,证明了其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信