Dion B. Nemez, Amelia Kacperkiewicz, Robert J. Ortiz, J. A. Gareth Williams, David E. Herbert
{"title":"1,7-Dihalogenated BODIPYs: Synthesis, Structure and Photophysics","authors":"Dion B. Nemez, Amelia Kacperkiewicz, Robert J. Ortiz, J. A. Gareth Williams, David E. Herbert","doi":"10.1021/acs.joc.5c00407","DOIUrl":null,"url":null,"abstract":"4,4-Difluoro-4-bora-3a,4a-diaza-<i>s</i>-indacene (BODIPY) and its derivatives are highly useful fluorescent dyes employed in myriad applications in chemistry and biology. Here, we revisit a series of dihalogenated (Cl, Br, I) BODIPY derivatives with rare 1,7-regiochemistry. In addition to their synthesis and structural characterization, we fill in a missing piece of the current literature by delineating their photophysical behavior, including the light-driven generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>) which is mediated with particularly high efficiency by the heavier diiodinated congener.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"45 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.5c00407","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) and its derivatives are highly useful fluorescent dyes employed in myriad applications in chemistry and biology. Here, we revisit a series of dihalogenated (Cl, Br, I) BODIPY derivatives with rare 1,7-regiochemistry. In addition to their synthesis and structural characterization, we fill in a missing piece of the current literature by delineating their photophysical behavior, including the light-driven generation of singlet oxygen (1O2) which is mediated with particularly high efficiency by the heavier diiodinated congener.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.