Near-infrared spatiotemporal color vision in humans enabled by upconversion contact lenses

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2025-05-22 DOI:10.1016/j.cell.2025.04.019
Yuqian Ma, Yunuo Chen, Sheng Wang, Zi-Han Chen, Yuanwei Zhang, Ling Huang, Xinxin Zhang, Fei Yin, Yunxuan Wang, Mingzhu Yang, Zhanjun Li, Kai Huang, Xin Fang, Zishuo Li, Minghong Wang, Wenhui Liu, Jia-Nan Li, Longfei Li, Hang Zhao, Min Wei, Tian Xue
{"title":"Near-infrared spatiotemporal color vision in humans enabled by upconversion contact lenses","authors":"Yuqian Ma, Yunuo Chen, Sheng Wang, Zi-Han Chen, Yuanwei Zhang, Ling Huang, Xinxin Zhang, Fei Yin, Yunxuan Wang, Mingzhu Yang, Zhanjun Li, Kai Huang, Xin Fang, Zishuo Li, Minghong Wang, Wenhui Liu, Jia-Nan Li, Longfei Li, Hang Zhao, Min Wei, Tian Xue","doi":"10.1016/j.cell.2025.04.019","DOIUrl":null,"url":null,"abstract":"Humans cannot perceive infrared light due to the physical thermodynamic properties of photon-detecting opsins. However, the capability to detect invisible multispectral infrared light with the naked eye is highly desirable. Here, we report wearable near-infrared (NIR) upconversion contact lenses (UCLs) with suitable optical properties, hydrophilicity, flexibility, and biocompatibility. Mice with UCLs could recognize NIR temporal and spatial information and make behavioral decisions. Furthermore, human participants wearing UCLs could discriminate NIR information, including temporal coding and spatial images. Notably, we have developed trichromatic UCLs (tUCLs), allowing humans to distinguish multiple spectra of NIR light, which can function as three primary colors, thereby achieving human NIR spatiotemporal color vision. Our research opens up the potential of wearable polymeric materials for non-invasive NIR vision, assisting humans in perceiving and transmitting temporal, spatial, and color dimensions of NIR light.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"27 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Humans cannot perceive infrared light due to the physical thermodynamic properties of photon-detecting opsins. However, the capability to detect invisible multispectral infrared light with the naked eye is highly desirable. Here, we report wearable near-infrared (NIR) upconversion contact lenses (UCLs) with suitable optical properties, hydrophilicity, flexibility, and biocompatibility. Mice with UCLs could recognize NIR temporal and spatial information and make behavioral decisions. Furthermore, human participants wearing UCLs could discriminate NIR information, including temporal coding and spatial images. Notably, we have developed trichromatic UCLs (tUCLs), allowing humans to distinguish multiple spectra of NIR light, which can function as three primary colors, thereby achieving human NIR spatiotemporal color vision. Our research opens up the potential of wearable polymeric materials for non-invasive NIR vision, assisting humans in perceiving and transmitting temporal, spatial, and color dimensions of NIR light.

Abstract Image

上转换隐形眼镜使人类的近红外时空色觉成为可能
由于光子探测视蛋白的物理热力学性质,人类无法感知红外光。然而,用肉眼检测不可见的多光谱红外光的能力是非常可取的。在这里,我们报告了可穿戴的近红外(NIR)上转换隐形眼镜(ucl)具有合适的光学特性、亲水性、柔韧性和生物相容性。ucl小鼠能够识别近红外时空信息并做出行为决策。此外,佩戴ucl的人类参与者可以区分近红外信息,包括时间编码和空间图像。值得注意的是,我们已经开发了三色ucl (tucl),使人类能够区分近红外光的多个光谱,这些光谱可以作为三基色,从而实现人类近红外光的时空色觉。我们的研究开辟了可穿戴聚合物材料在非侵入性近红外视觉方面的潜力,帮助人类感知和传输近红外光的时间、空间和颜色维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信