Jiyeon Min,Madolyn Britt,Bernard R Brooks,Sergei Sukharev,Jeffery B Klauda
{"title":"Thermodynamics of Arginine Interactions with Organic Phosphates.","authors":"Jiyeon Min,Madolyn Britt,Bernard R Brooks,Sergei Sukharev,Jeffery B Klauda","doi":"10.1016/j.bpj.2025.05.019","DOIUrl":null,"url":null,"abstract":"The thermodynamics of arginine-phosphate binding is key to cellular signaling, protein-nucleic acid interactions, and membrane protein dynamics. In biomolecules, monoester phosphates are typically employed as strong electrostatic anchors strategically placed in switch domains to mediate specific interactions. In the diester configuration, phosphate groups act as ubiquitous connectors in all nucleic acids and polar lipids, while also engaging in less specific but multiple electrostatic interactions. Here, we employ isothermal titration calorimetry (ITC) and a set of small-molecule models and peptides to benchmark the ability of the CHARMM force field to accurately reproduce these interactions. We observe good agreement between ITC and computational results for methylguanidinium (MGUA) with glycerol and glucose phosphates (MGUA-Gly3P, MGUA-Glu6P), and for arginine-glycine-arginine peptide with inositol triphosphate (RGR-IP3) systems, with experimental binding energies of -3.30 ± 0.30, -3.89 ± 0.30, and -8.96 ± 0.17 kcal/mol, compared to computational values of -4.08 ± 0.00, -4.20 ± 0.00, and -9.17 ± 0.20 kcal/mol, respectively. However, the experimental binding energy of -2.24 ± 0.71 kcal/mol between MGUA and dimethylphosphate (DMP) in a diester configuration was significantly underestimated in CHARMM computations (-0.51 ± 0.01 kcal/mol). The force field was, therefore, refined by reducing the Lennard-Jones Rmin parameter from 3.55 to 3.405 Å for a specific interaction involving nitrogen and oxygen atoms in MGUA-DMP. Our study brings another experimental means for fine-tuning force field parameters for the phosphates in two distinct configurations and enhances the accuracy of modeling nucleic acids, lipids, and membrane proteins.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":"45 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.05.019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The thermodynamics of arginine-phosphate binding is key to cellular signaling, protein-nucleic acid interactions, and membrane protein dynamics. In biomolecules, monoester phosphates are typically employed as strong electrostatic anchors strategically placed in switch domains to mediate specific interactions. In the diester configuration, phosphate groups act as ubiquitous connectors in all nucleic acids and polar lipids, while also engaging in less specific but multiple electrostatic interactions. Here, we employ isothermal titration calorimetry (ITC) and a set of small-molecule models and peptides to benchmark the ability of the CHARMM force field to accurately reproduce these interactions. We observe good agreement between ITC and computational results for methylguanidinium (MGUA) with glycerol and glucose phosphates (MGUA-Gly3P, MGUA-Glu6P), and for arginine-glycine-arginine peptide with inositol triphosphate (RGR-IP3) systems, with experimental binding energies of -3.30 ± 0.30, -3.89 ± 0.30, and -8.96 ± 0.17 kcal/mol, compared to computational values of -4.08 ± 0.00, -4.20 ± 0.00, and -9.17 ± 0.20 kcal/mol, respectively. However, the experimental binding energy of -2.24 ± 0.71 kcal/mol between MGUA and dimethylphosphate (DMP) in a diester configuration was significantly underestimated in CHARMM computations (-0.51 ± 0.01 kcal/mol). The force field was, therefore, refined by reducing the Lennard-Jones Rmin parameter from 3.55 to 3.405 Å for a specific interaction involving nitrogen and oxygen atoms in MGUA-DMP. Our study brings another experimental means for fine-tuning force field parameters for the phosphates in two distinct configurations and enhances the accuracy of modeling nucleic acids, lipids, and membrane proteins.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.