Guangzhao Zhang, Tong Zhang, Zhen Zhang, Ruilin He, Qingrong Wang, Shang-Sen Chi, Yanming Cui, Meng Danny Gu, Zhongbo Liu, Jian Chang, Chaoyang Wang, Kang Xu, Yonghong Deng
{"title":"High-energy and fast-charging lithium metal batteries enabled by tuning Li+-solvation via electron-withdrawing and lithiophobicity functionality","authors":"Guangzhao Zhang, Tong Zhang, Zhen Zhang, Ruilin He, Qingrong Wang, Shang-Sen Chi, Yanming Cui, Meng Danny Gu, Zhongbo Liu, Jian Chang, Chaoyang Wang, Kang Xu, Yonghong Deng","doi":"10.1038/s41467-025-59967-w","DOIUrl":null,"url":null,"abstract":"<p>The solvent fluorination almost always improves electrochemical stability of electrolytes against both lithium anodes and high-voltage cathodes in lithium metal batteries. However, how exactly fluorination affects Li<sup>+</sup>-solvation and interphasial chemistries remains unclear, hindering rational design of electrolytes and interphases with both wide electrochemical stability window and fast ion transport kinetics that are required for energy-dense and fast-charging LMBs. Here we introduce the trifluoromethylation (-CF<sub>3</sub>) at one end of 1,2-dimethoxyethane and generate 1,1,1-trifluoro-2-(2-methoxyethoxy) ethane, which as a single solvent of electrolyte simultaneously meets energy-dense and fast-charging requirements when dissolving 2 M lithium bis(fluorosulfonyl)imide. Beside the electron-withdrawing effect of -CF<sub>3</sub>, we find that its lithiophobic nature against Li<sup>+</sup> significantly alters the solvation structures, which favors the formation of anion-dominated clusters that lead to superior interphasial chemistries in layered structure and fast Li<sup>+</sup> transport kinetics. In such electrolyte, lithium metal batteries constructed with 50-μm-thin Li||high-loading-NMC811 in both coin and pouch cell configurations achieve >400 cycles under fast-charging condition, and >100 cycles in 14-Ah-level industrial pouch cell with a high energy density over 510 Wh kg<sup>−1</sup> at cell-level.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"45 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59967-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The solvent fluorination almost always improves electrochemical stability of electrolytes against both lithium anodes and high-voltage cathodes in lithium metal batteries. However, how exactly fluorination affects Li+-solvation and interphasial chemistries remains unclear, hindering rational design of electrolytes and interphases with both wide electrochemical stability window and fast ion transport kinetics that are required for energy-dense and fast-charging LMBs. Here we introduce the trifluoromethylation (-CF3) at one end of 1,2-dimethoxyethane and generate 1,1,1-trifluoro-2-(2-methoxyethoxy) ethane, which as a single solvent of electrolyte simultaneously meets energy-dense and fast-charging requirements when dissolving 2 M lithium bis(fluorosulfonyl)imide. Beside the electron-withdrawing effect of -CF3, we find that its lithiophobic nature against Li+ significantly alters the solvation structures, which favors the formation of anion-dominated clusters that lead to superior interphasial chemistries in layered structure and fast Li+ transport kinetics. In such electrolyte, lithium metal batteries constructed with 50-μm-thin Li||high-loading-NMC811 in both coin and pouch cell configurations achieve >400 cycles under fast-charging condition, and >100 cycles in 14-Ah-level industrial pouch cell with a high energy density over 510 Wh kg−1 at cell-level.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.