Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Rafael Luque Merino, Dumitru Călugăru, Haoyu Hu, Jaime Díez-Mérida, Andrés Díez-Carlón, Takashi Taniguchi, Kenji Watanabe, Paul Seifert, B. Andrei Bernevig, Dmitri K. Efetov
{"title":"Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene","authors":"Rafael Luque Merino, Dumitru Călugăru, Haoyu Hu, Jaime Díez-Mérida, Andrés Díez-Carlón, Takashi Taniguchi, Kenji Watanabe, Paul Seifert, B. Andrei Bernevig, Dmitri K. Efetov","doi":"10.1038/s41567-025-02912-x","DOIUrl":null,"url":null,"abstract":"<p>Recent studies have suggested that the strongly correlated flat bands of magic-angle twisted bilayer graphene may host coexisting light and heavy carriers. Although transport and spectroscopic measurements have hinted at this behaviour, distinct signatures of incoherent heavy carriers have not been reported. Here we provide evidence of this by performing thermoelectric transport measurements of magic-angle twisted bilayer graphene using the photo-thermoelectric effect in gate-defined p–n junctions. At low temperatures, we observe sign-preserving, filling-dependent oscillations of the Seebeck coefficient at non-zero integer fillings of the moiré superlattice. This suggests the preponderance of one carrier type even when the Fermi level is tuned through the charge neutrality point of the correlated states. At higher temperatures, the thermoelectric response provides evidence of strong electron correlations in the unordered, normal state. Our observations are explained by the interplay between light, long-lived electron states and heavy, short-lived hole excitations near the Fermi level of the symmetry-broken ground states. These findings are in qualitative agreement with the topological heavy fermion model.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"18 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02912-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have suggested that the strongly correlated flat bands of magic-angle twisted bilayer graphene may host coexisting light and heavy carriers. Although transport and spectroscopic measurements have hinted at this behaviour, distinct signatures of incoherent heavy carriers have not been reported. Here we provide evidence of this by performing thermoelectric transport measurements of magic-angle twisted bilayer graphene using the photo-thermoelectric effect in gate-defined p–n junctions. At low temperatures, we observe sign-preserving, filling-dependent oscillations of the Seebeck coefficient at non-zero integer fillings of the moiré superlattice. This suggests the preponderance of one carrier type even when the Fermi level is tuned through the charge neutrality point of the correlated states. At higher temperatures, the thermoelectric response provides evidence of strong electron correlations in the unordered, normal state. Our observations are explained by the interplay between light, long-lived electron states and heavy, short-lived hole excitations near the Fermi level of the symmetry-broken ground states. These findings are in qualitative agreement with the topological heavy fermion model.

Abstract Image

魔角扭曲双层石墨烯中轻电子带和重电子带的相互作用
最近的研究表明,魔角扭曲双层石墨烯的强相关平带可能同时存在轻载流子和重载流子。尽管输运和光谱测量已经暗示了这种行为,但还没有报道非相干重载流子的明显特征。在这里,我们通过在门定义的p-n结中使用光热电效应对神奇角扭曲双层石墨烯进行热电输运测量,提供了这一点的证据。在低温下,我们观察到在非零整数填充下,moir超晶格的塞贝克系数的保符号、依赖于填充的振荡。这表明一种载流子类型的优势,甚至当费米能级通过相关态的电荷中性点调谐时。在较高的温度下,热电响应提供了无序正常状态下强电子相关性的证据。我们的观察结果可以用在对称破缺基态费米能级附近的轻的、长寿命的电子态和重的、短寿命的空穴激发之间的相互作用来解释。这些发现在定性上与拓扑重费米子模型一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信