{"title":"Flows of liquid light seen in the synthetic frequency space of modulated fast-gain ring lasers","authors":"","doi":"10.1038/s41567-025-02886-w","DOIUrl":null,"url":null,"abstract":"Photon interactions in materials typically create a gaseous bosonic state, which is prone to turbulent behaviour that disrupts coherence. But it is now shown that, using fast-gain processes in a modulated semiconductor laser, light can be stabilized in a liquid-like state, enhancing the coherence of its flow.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"132 1","pages":""},"PeriodicalIF":18.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02886-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photon interactions in materials typically create a gaseous bosonic state, which is prone to turbulent behaviour that disrupts coherence. But it is now shown that, using fast-gain processes in a modulated semiconductor laser, light can be stabilized in a liquid-like state, enhancing the coherence of its flow.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.