Matteo Baggioli, Kyoung-Bum Huh, Hyun-Sik Jeong, Xuhao Jiang, Keun-Young Kim, Juan F. Pedraza
{"title":"Singular value decomposition and its blind spot for quantum chaos in non-Hermitian Sachdev-Ye-Kitaev models","authors":"Matteo Baggioli, Kyoung-Bum Huh, Hyun-Sik Jeong, Xuhao Jiang, Keun-Young Kim, Juan F. Pedraza","doi":"10.1103/physrevd.111.l101904","DOIUrl":null,"url":null,"abstract":"The study of chaos and complexity in non-Hermitian quantum systems poses significant challenges due to the emergence of complex eigenvalues in their spectra. Recently, the singular value decomposition (SVD) method was proposed to address these challenges. In this work, we identify two critical shortcomings of the SVD approach when analyzing Krylov complexity and spectral statistics in non-Hermitian settings. First, we show that SVD fails to reproduce conventional eigenvalue statistics in the Hermitian limit for systems with nonpositive definite spectra, as exemplified by a variant of the Sachdev-Ye-Kitaev (SYK) model. Second, and more fundamentally, Krylov complexity and spectral statistics derived via SVD cannot distinguish chaotic from integrable non-Hermitian dynamics, leading to results that conflict with complex spacing ratio analysis. Our findings reveal that SVD is inadequate for probing quantum chaos in non-Hermitian systems, and we advocate employing more robust methods, such as the bi-Lanczos algorithm, for future research in this direction. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"3 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l101904","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The study of chaos and complexity in non-Hermitian quantum systems poses significant challenges due to the emergence of complex eigenvalues in their spectra. Recently, the singular value decomposition (SVD) method was proposed to address these challenges. In this work, we identify two critical shortcomings of the SVD approach when analyzing Krylov complexity and spectral statistics in non-Hermitian settings. First, we show that SVD fails to reproduce conventional eigenvalue statistics in the Hermitian limit for systems with nonpositive definite spectra, as exemplified by a variant of the Sachdev-Ye-Kitaev (SYK) model. Second, and more fundamentally, Krylov complexity and spectral statistics derived via SVD cannot distinguish chaotic from integrable non-Hermitian dynamics, leading to results that conflict with complex spacing ratio analysis. Our findings reveal that SVD is inadequate for probing quantum chaos in non-Hermitian systems, and we advocate employing more robust methods, such as the bi-Lanczos algorithm, for future research in this direction. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.