Adsorption-induced lattice weakening: understanding the mechanism of cysteine-accelerated pyrite oxidation

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tong Liu , Yutian Hu , Nan Chen , Hongrui Ding , Chuanping Feng , Wang Lu
{"title":"Adsorption-induced lattice weakening: understanding the mechanism of cysteine-accelerated pyrite oxidation","authors":"Tong Liu ,&nbsp;Yutian Hu ,&nbsp;Nan Chen ,&nbsp;Hongrui Ding ,&nbsp;Chuanping Feng ,&nbsp;Wang Lu","doi":"10.1016/j.apsusc.2025.163594","DOIUrl":null,"url":null,"abstract":"<div><div>Pyrite (FeS<sub>2</sub>) oxidation is pivotal but often hindered by passivation. Cysteine (Cys) accelerates this oxidation and overcomes passivation, though the mechanism is debated. This study combines electrochemistry and DFT to reveal Cys acts primarily by weakening the pyrite lattice upon adsorption. Electrochemical results confirm Cys uniquely eliminates passivation and enhances interfacial charge dynamics. Crucially, DFT calculations (via COHP analysis) show Cys chemisorption through an interfacial Fe-S bond reconfigures pyrite’s electronic structure, occupying anti-bonding states of adjacent Fe-S lattice bonds below the Fermi level. This directly indicates weakening of these lattice bonds near the adsorption site. We propose this lattice destabilization, lowering the energy barrier for atom removal, is the primary mechanism for Cys-accelerated oxidation, rather than solely enhanced charge transfer or passivation prevention. These findings offer new atomic-level insight into organic modulation of mineral reactivity via substrate bond alteration, impacting biogeochemistry, bioleaching, and materials science.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"706 ","pages":"Article 163594"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225013091","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrite (FeS2) oxidation is pivotal but often hindered by passivation. Cysteine (Cys) accelerates this oxidation and overcomes passivation, though the mechanism is debated. This study combines electrochemistry and DFT to reveal Cys acts primarily by weakening the pyrite lattice upon adsorption. Electrochemical results confirm Cys uniquely eliminates passivation and enhances interfacial charge dynamics. Crucially, DFT calculations (via COHP analysis) show Cys chemisorption through an interfacial Fe-S bond reconfigures pyrite’s electronic structure, occupying anti-bonding states of adjacent Fe-S lattice bonds below the Fermi level. This directly indicates weakening of these lattice bonds near the adsorption site. We propose this lattice destabilization, lowering the energy barrier for atom removal, is the primary mechanism for Cys-accelerated oxidation, rather than solely enhanced charge transfer or passivation prevention. These findings offer new atomic-level insight into organic modulation of mineral reactivity via substrate bond alteration, impacting biogeochemistry, bioleaching, and materials science.

Abstract Image

吸附诱导的晶格弱化:了解半胱氨酸加速黄铁矿氧化的机理
黄铁矿(FeS2)氧化是关键,但往往阻碍钝化。半胱氨酸(Cys)加速了这种氧化并克服了钝化,尽管其机制还存在争议。本研究结合电化学和DFT揭示了Cys的主要作用是在吸附时削弱黄铁矿晶格。电化学结果证实,Cys独特地消除了钝化,增强了界面电荷动力学。至关重要的是,DFT计算(通过COHP分析)表明,通过Fe-S键界面的Cys化学吸附重新配置了黄铁矿的电子结构,占据了费米能级以下邻近Fe-S晶格键的反键状态。这直接表明在吸附位点附近这些晶格键的减弱。我们提出这种晶格不稳定,降低原子去除的能量势垒,是cys加速氧化的主要机制,而不仅仅是增强电荷转移或钝化预防。这些发现为通过底物键改变对矿物反应性的有机调节提供了新的原子水平的见解,对生物地球化学、生物浸出和材料科学产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信