Defect-activated anatase TiO2 surfaces for enhanced capture of bisphenol S and sulfolane: A coupled DFT and SCC-DFTB analysis

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hassane Lgaz , Mouslim Messali , Eno E. Ebenso , Han-seung Lee
{"title":"Defect-activated anatase TiO2 surfaces for enhanced capture of bisphenol S and sulfolane: A coupled DFT and SCC-DFTB analysis","authors":"Hassane Lgaz ,&nbsp;Mouslim Messali ,&nbsp;Eno E. Ebenso ,&nbsp;Han-seung Lee","doi":"10.1016/j.apsusc.2025.163601","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium dioxide (TiO<sub>2</sub>) has emerged as a vital nanomaterial for environmental remediation, yet the adsorption mechanisms of persistent contaminants such as Bisphenol S (BisS) and Sulfolane (SulF) remain insufficiently understood. In this study, a hybrid computational framework; combining quantum chemical methods, COSMO-RS modeling, and self-consistent charge density-functional tight-binding (SCC-DFTB) simulations, was employed to investigate how BisS and SulF interact with pristine and oxygen-vacancy-modified anatase TiO<sub>2</sub>. Chemical reactivity descriptors highlighted BisS’s greater propensity for electron donation and acceptance, while SulF’s sulfone group emerged as a localized site for bonding. The COSMO-RS results revealed both molecules to be strong hydrogen-bond acceptors, pointing to robust polar interactions under aqueous conditions. SCC-DFTB calculations showed enhanced adsorption on defect-rich surfaces, with BisS exhibiting binding energies of –2.39  eV (defected) and –2.05  eV (pristine), whereas SulF binds with –1.91  eV and –1.18  eV, respectively. Projected density of states (PDOS) analyses indicated significant orbital mixing and peak broadening upon adsorption, emphasizing how surface defects can intensify pollutant–TiO<sub>2</sub> interactions. Overall, these findings demonstrate that molecular functionalities and lattice vacancies synergistically control adsorption strength, offering a pathway for targeted pollutant removal strategies.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"706 ","pages":"Article 163601"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225013169","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium dioxide (TiO2) has emerged as a vital nanomaterial for environmental remediation, yet the adsorption mechanisms of persistent contaminants such as Bisphenol S (BisS) and Sulfolane (SulF) remain insufficiently understood. In this study, a hybrid computational framework; combining quantum chemical methods, COSMO-RS modeling, and self-consistent charge density-functional tight-binding (SCC-DFTB) simulations, was employed to investigate how BisS and SulF interact with pristine and oxygen-vacancy-modified anatase TiO2. Chemical reactivity descriptors highlighted BisS’s greater propensity for electron donation and acceptance, while SulF’s sulfone group emerged as a localized site for bonding. The COSMO-RS results revealed both molecules to be strong hydrogen-bond acceptors, pointing to robust polar interactions under aqueous conditions. SCC-DFTB calculations showed enhanced adsorption on defect-rich surfaces, with BisS exhibiting binding energies of –2.39  eV (defected) and –2.05  eV (pristine), whereas SulF binds with –1.91  eV and –1.18  eV, respectively. Projected density of states (PDOS) analyses indicated significant orbital mixing and peak broadening upon adsorption, emphasizing how surface defects can intensify pollutant–TiO2 interactions. Overall, these findings demonstrate that molecular functionalities and lattice vacancies synergistically control adsorption strength, offering a pathway for targeted pollutant removal strategies.

Abstract Image

缺陷激活锐钛矿TiO2表面增强双酚S和亚砜的捕获:耦合DFT和SCC-DFTB分析
二氧化钛(TiO2)已成为一种重要的环境修复纳米材料,但其对持久性污染物如双酚S (BisS)和硫烷(SulF)的吸附机制尚不清楚。在这项研究中,混合计算框架;结合量子化学方法、cosmos - rs模型和自一致电荷密度-功能紧密结合(SCC-DFTB)模拟,研究了BisS和SulF如何与原始和氧空位修饰的锐钛矿TiO2相互作用。化学反应描述符突出了bis更大的电子捐赠和接受倾向,而硫的砜基则作为一个局部的键合位点出现。cosmos - rs结果显示,这两种分子都是强氢键受体,表明在水条件下存在强大的极性相互作用。SCC-DFTB计算表明,铋在富含缺陷表面的吸附增强,铋的结合能为-2.39 eV(缺陷)和-2.05 eV(原始),而硫的结合能分别为-1.91 eV和-1.18 eV。预测态密度(PDOS)分析表明,在吸附过程中存在显著的轨道混合和峰展宽,强调了表面缺陷如何加剧污染物与tio2的相互作用。总的来说,这些发现表明分子功能和晶格空位协同控制吸附强度,为有针对性的污染物去除策略提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信