{"title":"Reveal genomic insights into cotton domestication and improvement using gene level functional haplotype-based GWAS","authors":"Guoan Qi, Yiqian Li, Wanying Zhang, Zegang Han, Jinwen Chen, Ziqian Zhang, Lisha Xuan, Rui Chen, Lei Fang, Yan Hu, Tianzhen Zhang","doi":"10.1038/s41467-025-59983-w","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) are widely used to detect associations between genetic variants and phenotypes. However, few studies have thoroughly analyzed genes, the fundamental and most crucial functional units. Here, we develop an innovative strategy to translate genomic variants into gene-level functional haplotypes (FHs), effectively reducing the interference from complex genome structure and linkage disequilibrium (LD) present in the conventional genetic mapping framework. Using refined mixed linear models, gene-level FH is regressed with 20 cotton agronomic traits across 245 sets of phenotypic values in 3,724 accessions, directly identifying 532 quantitative trait genes (QTGs) with significant breeding potential. The biological function of a superior fiber quality QTG encoding ferulic acid 5-hydroxylase 1 is experimentally validated. Thereafter, we systematically analyze the genetic basis of cotton domestication and improvement at the gene level. This report provides genomic insight into the genetic dissection and efficient mapping of functional genes in plants.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59983-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Genome-wide association studies (GWAS) are widely used to detect associations between genetic variants and phenotypes. However, few studies have thoroughly analyzed genes, the fundamental and most crucial functional units. Here, we develop an innovative strategy to translate genomic variants into gene-level functional haplotypes (FHs), effectively reducing the interference from complex genome structure and linkage disequilibrium (LD) present in the conventional genetic mapping framework. Using refined mixed linear models, gene-level FH is regressed with 20 cotton agronomic traits across 245 sets of phenotypic values in 3,724 accessions, directly identifying 532 quantitative trait genes (QTGs) with significant breeding potential. The biological function of a superior fiber quality QTG encoding ferulic acid 5-hydroxylase 1 is experimentally validated. Thereafter, we systematically analyze the genetic basis of cotton domestication and improvement at the gene level. This report provides genomic insight into the genetic dissection and efficient mapping of functional genes in plants.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.