Dual-intermediator guided methodical molecular exchange towards optimized crystallization kinetics of advanced perovskite solar cells

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yue Peng , Qiyao Guo , Yueji Liu , Qi Chen , Wenqing Lang , Yu Yang , Jie Dou , Yingli Wang , Xinyu Zhang , Jialong Duan , Yuanyuan Zhao , Xiya Yang , Weilin Chen , Qunwei Tang
{"title":"Dual-intermediator guided methodical molecular exchange towards optimized crystallization kinetics of advanced perovskite solar cells","authors":"Yue Peng ,&nbsp;Qiyao Guo ,&nbsp;Yueji Liu ,&nbsp;Qi Chen ,&nbsp;Wenqing Lang ,&nbsp;Yu Yang ,&nbsp;Jie Dou ,&nbsp;Yingli Wang ,&nbsp;Xinyu Zhang ,&nbsp;Jialong Duan ,&nbsp;Yuanyuan Zhao ,&nbsp;Xiya Yang ,&nbsp;Weilin Chen ,&nbsp;Qunwei Tang","doi":"10.1016/j.nanoen.2025.111169","DOIUrl":null,"url":null,"abstract":"<div><div>Sequential deposition has been demonstrated to provide a maneuverable and reproducible crystallization process for formamidinium-lead triiodide (FAPbI<sub>3</sub>) perovskite solar cells (PSCs). However, the uncontrollable PbI<sub>2</sub> transformation by organic cations brings great challenges to ideal perovskite films. The state-of-the-art studies predominantly emphasize either PbI<sub>2</sub>-intermediate phases or the use of FA<sup>+</sup>-retardants to slow down intramolecular exchange, lacking of comprehensive investigation into bilateral coordination enabled methodical molecular exchange for the rational growth of α-FAPbI<sub>3</sub> films. In this study, we launch a dual-intermediator strategy involving 1,3-propanediamine (DAP) and 4-aminobutyric acid (GABA) to bilaterally regulate the crystallization kinetics of FAPbI<sub>3</sub>. This dual-intermediator line synergistically advances efficient and direct α-FAPbI<sub>3</sub> phase transition with preferred orientation and fewer defects, generating improved energetic alignment and charge transport dynamics in PSCs. Encouragingly, the best PSC free of encapsulation delivers a champion efficiency of 25.52 % and retains 95.2 % efficiency after 1200 h of maximum power point tracking under continuous AM 1.5 G illumination in N<sub>2</sub> at 50 ℃.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"142 ","pages":"Article 111169"},"PeriodicalIF":16.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525005282","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential deposition has been demonstrated to provide a maneuverable and reproducible crystallization process for formamidinium-lead triiodide (FAPbI3) perovskite solar cells (PSCs). However, the uncontrollable PbI2 transformation by organic cations brings great challenges to ideal perovskite films. The state-of-the-art studies predominantly emphasize either PbI2-intermediate phases or the use of FA+-retardants to slow down intramolecular exchange, lacking of comprehensive investigation into bilateral coordination enabled methodical molecular exchange for the rational growth of α-FAPbI3 films. In this study, we launch a dual-intermediator strategy involving 1,3-propanediamine (DAP) and 4-aminobutyric acid (GABA) to bilaterally regulate the crystallization kinetics of FAPbI3. This dual-intermediator line synergistically advances efficient and direct α-FAPbI3 phase transition with preferred orientation and fewer defects, generating improved energetic alignment and charge transport dynamics in PSCs. Encouragingly, the best PSC free of encapsulation delivers a champion efficiency of 25.52 % and retains 95.2 % efficiency after 1200 h of maximum power point tracking under continuous AM 1.5 G illumination in N2 at 50 ℃.

Abstract Image

双中间体引导有序分子交换优化先进钙钛矿太阳能电池结晶动力学
顺序沉积已被证明为三碘化甲醛-铅(FAPbI3)钙钛矿太阳能电池(PSCs)提供了一种可操作且可重复的结晶过程。然而,有机阳离子对PbI2的不可控转化给理想的钙钛矿薄膜带来了很大的挑战。目前的研究主要强调pbi2 -中间相或使用FA+-缓蚀剂来减缓分子内交换,缺乏对双边配位实现有序分子交换以实现α-FAPbI3膜的合理生长的全面研究。在本研究中,我们启动了涉及1,3-丙二胺(DAP)和4-氨基丁酸(GABA)的双中间体策略,以双边调节FAPbI3的结晶动力学。这条双中间体线协同推进了α-FAPbI3高效直接的相变,具有更优的取向和更少的缺陷,从而改善了psc的能量取向和电荷输运动力学。令人鼓舞的是,无封装的最佳PSC可提供25.52%的冠军效率,并在50℃的N2中连续AM 1.5 G照明下,在最大功率点跟踪1200小时后保持95.2%的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信