Xuetong He, Lu Tian, Jianjian Gong, Zhaojun Mo, Xinqiang Gao, Guodong Liu
{"title":"Novel gadolinium garnet Gd3Te2Li3O12: Magnetism and magnetocaloric performance for sub-kelvin cryogenic applications","authors":"Xuetong He, Lu Tian, Jianjian Gong, Zhaojun Mo, Xinqiang Gao, Guodong Liu","doi":"10.1039/d5dt00989h","DOIUrl":null,"url":null,"abstract":"The global helium shortage and escalating costs in cryogenic engineering have intensified demands for helium-free refrigeration technologies. Adiabatic demagnetization refrigeration (ADR) based on the magnetocaloric effect (MCE) presents a viable solution, with its efficacy fundamentally dependent on advanced magnetocaloric materials. Here we present the successful synthesis of a novel gadolinium garnet Gd3Te2Li3O12 through solid-state reaction, which crystallizes in the cubic Ia-3d space group. The integration of magnetic characterization results with density functional theory (DFT) calculations establishes Gd3Te2Li3O12 as an antiferromagnetic compound exhibiting ultra-low magnetic ordering below 0.4 K. A comprehensive evaluation of the sub-kelvin magnetocaloric parameters demonstrates advantageous characteristics compared to commercial gadolinium gallium garnet (GGG) benchmarks, featuring both reduced magnetic ordering temperature and optimized entropy variation in the sub-Kelvin regime. These metrics position Gd3Te2Li3O12 as a prime candidate for sub-Kelvin ADR systems, while the observed geometrically frustrated magnetic sublattice configuration suggests new design principles for next generation magnetocaloric materials.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"42 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00989h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The global helium shortage and escalating costs in cryogenic engineering have intensified demands for helium-free refrigeration technologies. Adiabatic demagnetization refrigeration (ADR) based on the magnetocaloric effect (MCE) presents a viable solution, with its efficacy fundamentally dependent on advanced magnetocaloric materials. Here we present the successful synthesis of a novel gadolinium garnet Gd3Te2Li3O12 through solid-state reaction, which crystallizes in the cubic Ia-3d space group. The integration of magnetic characterization results with density functional theory (DFT) calculations establishes Gd3Te2Li3O12 as an antiferromagnetic compound exhibiting ultra-low magnetic ordering below 0.4 K. A comprehensive evaluation of the sub-kelvin magnetocaloric parameters demonstrates advantageous characteristics compared to commercial gadolinium gallium garnet (GGG) benchmarks, featuring both reduced magnetic ordering temperature and optimized entropy variation in the sub-Kelvin regime. These metrics position Gd3Te2Li3O12 as a prime candidate for sub-Kelvin ADR systems, while the observed geometrically frustrated magnetic sublattice configuration suggests new design principles for next generation magnetocaloric materials.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.