Neurosymbolic AI as an antithesis to scaling laws.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-05-20 eCollection Date: 2025-05-01 DOI:10.1093/pnasnexus/pgaf117
Alvaro Velasquez, Neel Bhatt, Ufuk Topcu, Zhangyang Wang, Katia Sycara, Simon Stepputtis, Sandeep Neema, Gautam Vallabha
{"title":"Neurosymbolic AI as an antithesis to scaling laws.","authors":"Alvaro Velasquez, Neel Bhatt, Ufuk Topcu, Zhangyang Wang, Katia Sycara, Simon Stepputtis, Sandeep Neema, Gautam Vallabha","doi":"10.1093/pnasnexus/pgaf117","DOIUrl":null,"url":null,"abstract":"<p><p>The recent progress in machine learning has shifted the trends in artificial intelligence (AI) toward an overreliance on increasing amounts of data, computing power, and model parameters. These trends have resulted in success, but have also created a monolithic perspective for AI, increased the barriers to entry outside of large tech companies, and raised concerns about computational sustainability. Neurosymbolic AI is a growing area that promotes methodological heterogeneity and aims to push the frontiers of AI through affordable data and computing power.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 5","pages":"pgaf117"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The recent progress in machine learning has shifted the trends in artificial intelligence (AI) toward an overreliance on increasing amounts of data, computing power, and model parameters. These trends have resulted in success, but have also created a monolithic perspective for AI, increased the barriers to entry outside of large tech companies, and raised concerns about computational sustainability. Neurosymbolic AI is a growing area that promotes methodological heterogeneity and aims to push the frontiers of AI through affordable data and computing power.

神经符号人工智能是缩放定律的对立面。
机器学习的最新进展已经改变了人工智能(AI)的趋势,使其过度依赖于越来越多的数据、计算能力和模型参数。这些趋势带来了成功,但也为人工智能创造了一个单一的视角,增加了大型科技公司以外的进入门槛,并引发了对计算可持续性的担忧。神经符号人工智能是一个不断发展的领域,它促进了方法论的异质性,旨在通过负担得起的数据和计算能力推动人工智能的前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信