Multi-instance learning with attention mechanism for coronary artery stenosis detection on coronary computed tomography angiography.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-04-01 eCollection Date: 2025-05-01 DOI:10.1093/ehjdh/ztaf029
Vibha Gupta, Petur Petursson, Lukas Hilgendorf, Aidin Rawshani, Jan Borén, Truls Råmunddal, Elmir Omerovic, Antros Louca, Oskar Angerås, Justin Schneiderman, Kristofer Skoglund, Deepak L Bhatt, Magnus Kjellberg, Erik Andersson, Carlo Pirazzi, Araz Rawshani
{"title":"Multi-instance learning with attention mechanism for coronary artery stenosis detection on coronary computed tomography angiography.","authors":"Vibha Gupta, Petur Petursson, Lukas Hilgendorf, Aidin Rawshani, Jan Borén, Truls Råmunddal, Elmir Omerovic, Antros Louca, Oskar Angerås, Justin Schneiderman, Kristofer Skoglund, Deepak L Bhatt, Magnus Kjellberg, Erik Andersson, Carlo Pirazzi, Araz Rawshani","doi":"10.1093/ehjdh/ztaf029","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Accurate detection of coronary artery stenosis (CAS) on coronary computed tomography angiography is vital for saving lives, as timely diagnosis can prevent severe cardiac events. However, this task remains challenging due to data complexity and variability in imaging protocols. Deep learning offers promising potential to automate detection, but robust methods are essential to address real-world challenges effectively and enhance patient outcomes.</p><p><strong>Methods and results: </strong>A total of 900 cases with curved multiplanar reformations, pre-generated during routine clinical workflows, were used to train a multi-instance learning (MIL) model for detecting significant CAS (≥50% luminal obstruction) in the left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX), comprising 776 LAD, 694 RCA, and 600 LCX reconstructions. Patient-level predictions utilized attention scores to quantify each slice's contribution, ensuring a robust and interpretable diagnostic approach. The model achieved the best performance for LAD [area under the curve (AUC): 0.92, 95% confidence interval (CI): 0.87-0.96; Brier score: 0.11], followed by RCA (AUC: 0.91, 95% CI: 0.82-0.999; Brier score: 0.09) and LCX (AUC: 0.92, 95% CI: 0.84-0.99; Brier score: 0.07). Calibration was good for LAD but less precise for RCA and LCX. Attention scores enhanced diagnostic precision by focusing on the most relevant slices.</p><p><strong>Conclusion: </strong>This study highlights the potential of MIL models for CAS detection, with remarkable performance in the LAD. By using attention scores, the model effectively identifies key slices from real-world data, seamlessly integrating with routine clinical workflows. Multi-range pre-processing addresses data complexity, enhancing diagnostic accuracy and supporting clinical decision-making.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 3","pages":"382-391"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Accurate detection of coronary artery stenosis (CAS) on coronary computed tomography angiography is vital for saving lives, as timely diagnosis can prevent severe cardiac events. However, this task remains challenging due to data complexity and variability in imaging protocols. Deep learning offers promising potential to automate detection, but robust methods are essential to address real-world challenges effectively and enhance patient outcomes.

Methods and results: A total of 900 cases with curved multiplanar reformations, pre-generated during routine clinical workflows, were used to train a multi-instance learning (MIL) model for detecting significant CAS (≥50% luminal obstruction) in the left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX), comprising 776 LAD, 694 RCA, and 600 LCX reconstructions. Patient-level predictions utilized attention scores to quantify each slice's contribution, ensuring a robust and interpretable diagnostic approach. The model achieved the best performance for LAD [area under the curve (AUC): 0.92, 95% confidence interval (CI): 0.87-0.96; Brier score: 0.11], followed by RCA (AUC: 0.91, 95% CI: 0.82-0.999; Brier score: 0.09) and LCX (AUC: 0.92, 95% CI: 0.84-0.99; Brier score: 0.07). Calibration was good for LAD but less precise for RCA and LCX. Attention scores enhanced diagnostic precision by focusing on the most relevant slices.

Conclusion: This study highlights the potential of MIL models for CAS detection, with remarkable performance in the LAD. By using attention scores, the model effectively identifies key slices from real-world data, seamlessly integrating with routine clinical workflows. Multi-range pre-processing addresses data complexity, enhancing diagnostic accuracy and supporting clinical decision-making.

基于注意机制的多实例学习在冠状动脉ct血管造影中检测冠状动脉狭窄。
目的:冠状动脉ct血管造影准确发现冠状动脉狭窄(CAS)对挽救生命至关重要,及时诊断可以预防严重的心脏事件。然而,由于数据的复杂性和成像协议的可变性,这项任务仍然具有挑战性。深度学习为自动化检测提供了巨大的潜力,但强大的方法对于有效应对现实世界的挑战和提高患者的治疗效果至关重要。方法与结果:使用900例在常规临床工作流程中预先生成的弯曲多平面重构,训练一个多实例学习(MIL)模型,用于检测左前降支(LAD)、右冠状动脉(RCA)和左旋支(LCX)中明显的CAS(≥50%管腔阻塞),包括776例LAD、694例RCA和600例LCX重建。患者水平的预测利用注意力评分来量化每个切片的贡献,确保了稳健和可解释的诊断方法。该模型对LAD表现最佳[曲线下面积(AUC): 0.92, 95%置信区间(CI): 0.87-0.96;Brier评分:0.11],其次是RCA (AUC: 0.91, 95% CI: 0.82 ~ 0.999;Brier评分:0.09)和LCX (AUC: 0.92, 95% CI: 0.84-0.99;Brier评分:0.07)。校正对LAD很好,但对RCA和LCX不太精确。注意力分数通过关注最相关的切片来提高诊断的准确性。结论:本研究突出了MIL模型用于CAS检测的潜力,在LAD中表现出色。通过使用注意力评分,该模型有效地从现实世界的数据中识别关键切片,与常规临床工作流程无缝集成。多量程预处理解决了数据复杂性,提高了诊断准确性并支持临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信