{"title":"Xanthan gum-based protocatechuic acid grafted carboxymethyl chitosan hydrogel with injectable, spraying, self-healing, and enhanced antioxidant properties.","authors":"Jiaxue Tang, Chuzhou Wen, Shengnan Zheng, Changkai Sun, Fengtao Wang, Shui Guan","doi":"10.1088/1748-605X/addb1d","DOIUrl":null,"url":null,"abstract":"<p><p>Overcoming the limitations of conventional antioxidants in treating oxidative stress-related neurodegenerative diseases (NDs) remains a critical challenge, thus more effective antioxidant strategies need to be studied urgently. To address this, we developed a novel pH-responsive drug-delivery hydrogel, PCA-g-CMCS/OXG, by grafting protocatechuic acid (PCA) onto carboxymethyl chitosan (CMCS) via amide bonds and blending it with oxidized xanthan gum (OXG) to form dynamic imine bonds. The conjugate PCA-g-CMCS achieved an unprecedented grafting efficiency of 785.3 mg g<sup>-1</sup>through optimized reactant ratios, pH, and reaction time. And the multifunctional hydrogel PCA-g-CMCS/OXG offers three key advantages: (1) rapid tunable gelation time (10-110 s) and robust mechanical/rheological properties enabling injectable and sprayable applications; (2) self-healing capability and sustained pH-responsive PCA release over 15 d, ensuring long-term therapeutic efficacy; and (3) superior cytoprotection, as the hydrogel exhibited excellent biocompatibility with SH-SY5Y neuronal cells and significantly increased cell viability to 76.60% from H<sub>2</sub>O<sub>2</sub>-induced oxidative damage (vs. 48.61% for control,<i>p</i>< 0.01). Therefore, the smart Schiff's base hydrogel is a drug loaded material with great clinical application prospect for the treatment of NDs.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/addb1d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Overcoming the limitations of conventional antioxidants in treating oxidative stress-related neurodegenerative diseases (NDs) remains a critical challenge, thus more effective antioxidant strategies need to be studied urgently. To address this, we developed a novel pH-responsive drug-delivery hydrogel, PCA-g-CMCS/OXG, by grafting protocatechuic acid (PCA) onto carboxymethyl chitosan (CMCS) via amide bonds and blending it with oxidized xanthan gum (OXG) to form dynamic imine bonds. The conjugate PCA-g-CMCS achieved an unprecedented grafting efficiency of 785.3 mg g-1through optimized reactant ratios, pH, and reaction time. And the multifunctional hydrogel PCA-g-CMCS/OXG offers three key advantages: (1) rapid tunable gelation time (10-110 s) and robust mechanical/rheological properties enabling injectable and sprayable applications; (2) self-healing capability and sustained pH-responsive PCA release over 15 d, ensuring long-term therapeutic efficacy; and (3) superior cytoprotection, as the hydrogel exhibited excellent biocompatibility with SH-SY5Y neuronal cells and significantly increased cell viability to 76.60% from H2O2-induced oxidative damage (vs. 48.61% for control,p< 0.01). Therefore, the smart Schiff's base hydrogel is a drug loaded material with great clinical application prospect for the treatment of NDs.