{"title":"Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health.","authors":"Igor Nelson","doi":"10.1080/15368378.2025.2508466","DOIUrl":null,"url":null,"abstract":"<p><p>This article explores the relationship between electromagnetic fields (EMF) and biological systems, focusing on the influence of extremely low-frequency electromagnetic frequencies (ELF), particularly Schumann's resonance (SR) at 7.83 hz. Cells and proteins may have evolved to take advantage of frequencies naturally present in the Earth's EMF, potentially enhancing cellular energy levels and affecting resting membrane potential (RMP). Thus, changes in or absence of SR may have adverse effects on the functioning of the whole organism. Bioelectricity, independent of genes, has been shown to modulate health, suggesting the potential for using controlled application of EMF frequencies in treating certain types of cancer or conditions affecting the RMP. Research indicates that human brainwave activity is highly dependent on the SR, implying a correlation between atmospheric electromagnetic frequencies and brain activity. ELF, including SR, appears to modulate cellular calcium influx/efflux, likely via indirect mechanisms involving field-sensitive molecules or radical pairs that affect ion channel behavior which plays a critical role in cell signaling and regulation of various processes. It can also trigger a cascade of molecular events that ultimately lead to the generation of action potentials, affecting consciousness and behavior. The influence of atmospheric electromagnetic frequencies on human brainwave activity, modulation of cellular calcium influx/efflux, and potential effects on cellular energy levels and RMP highlight the significance of ELF in biological systems. However, further research is required to fully understand these mechanisms and their implications for human health and well-being.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2025.2508466","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article explores the relationship between electromagnetic fields (EMF) and biological systems, focusing on the influence of extremely low-frequency electromagnetic frequencies (ELF), particularly Schumann's resonance (SR) at 7.83 hz. Cells and proteins may have evolved to take advantage of frequencies naturally present in the Earth's EMF, potentially enhancing cellular energy levels and affecting resting membrane potential (RMP). Thus, changes in or absence of SR may have adverse effects on the functioning of the whole organism. Bioelectricity, independent of genes, has been shown to modulate health, suggesting the potential for using controlled application of EMF frequencies in treating certain types of cancer or conditions affecting the RMP. Research indicates that human brainwave activity is highly dependent on the SR, implying a correlation between atmospheric electromagnetic frequencies and brain activity. ELF, including SR, appears to modulate cellular calcium influx/efflux, likely via indirect mechanisms involving field-sensitive molecules or radical pairs that affect ion channel behavior which plays a critical role in cell signaling and regulation of various processes. It can also trigger a cascade of molecular events that ultimately lead to the generation of action potentials, affecting consciousness and behavior. The influence of atmospheric electromagnetic frequencies on human brainwave activity, modulation of cellular calcium influx/efflux, and potential effects on cellular energy levels and RMP highlight the significance of ELF in biological systems. However, further research is required to fully understand these mechanisms and their implications for human health and well-being.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.