Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Rebecca H Cole, Marie-Charlotte Allichon, Max E Joffe
{"title":"Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms.","authors":"Rebecca H Cole, Marie-Charlotte Allichon, Max E Joffe","doi":"10.1523/JNEUROSCI.1963-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of opioid receptors, positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how classical opioid receptor systems regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization of how the Mu opioid receptor (MOR), Delta opioid receptor (DOR), and Kappa opioid receptor (KOR) regulate inhibitory transmission in male and female mice. We show that across these receptor systems, DOR activation is more effective at suppressing spontaneous inhibitory transmission in layer 2/3 of the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release, and KOR plays a minor role in inhibitory transmission. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through simultaneous pre- and postsynaptic modifications to IN physiology, whereas MOR function varies between somato-dendritic or presynaptic signaling depending on cell type.<b>Significance Statement</b> The endogenous opioid system regulates behaviors that rely on prefrontal cortex (PFC) function. Previous studies have described opioid receptor expression within cortical GABAergic interneurons, but a detailed understanding of how the Mu (MOR), Delta (DOR), and Kappa opioid receptor (KOR) regulate different interneuron subtypes and microcircuits has not been reported. We use whole-cell patch-clamp electrophysiology, genetically engineered mice, and optogenetics to assess MOR, DOR, and KOR regulation of PFC inhibitory transmission, demonstrating that MOR and DOR inhibition of interneurons display qualitative and quantitative variation across GABAergic circuits within mouse prelimbic PFC.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1963-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of opioid receptors, positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how classical opioid receptor systems regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization of how the Mu opioid receptor (MOR), Delta opioid receptor (DOR), and Kappa opioid receptor (KOR) regulate inhibitory transmission in male and female mice. We show that across these receptor systems, DOR activation is more effective at suppressing spontaneous inhibitory transmission in layer 2/3 of the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release, and KOR plays a minor role in inhibitory transmission. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through simultaneous pre- and postsynaptic modifications to IN physiology, whereas MOR function varies between somato-dendritic or presynaptic signaling depending on cell type.Significance Statement The endogenous opioid system regulates behaviors that rely on prefrontal cortex (PFC) function. Previous studies have described opioid receptor expression within cortical GABAergic interneurons, but a detailed understanding of how the Mu (MOR), Delta (DOR), and Kappa opioid receptor (KOR) regulate different interneuron subtypes and microcircuits has not been reported. We use whole-cell patch-clamp electrophysiology, genetically engineered mice, and optogenetics to assess MOR, DOR, and KOR regulation of PFC inhibitory transmission, demonstrating that MOR and DOR inhibition of interneurons display qualitative and quantitative variation across GABAergic circuits within mouse prelimbic PFC.

阿片受体通过可分离的细胞和分子机制调节前额叶皮层内的抑制。
皮层抑制性微回路中的异常信号传导已被确定为神经精神疾病的共同特征。神经元间(IN)的活动是由神经调节系统精确调节的,它引起突触传递和主要细胞输出的广泛变化。皮层中间神经元表达高水平的阿片受体,将阿片信号定位为抑制传递的关键调节因子。然而,我们缺乏对经典阿片受体系统如何调节前额叶皮层(PFC)微电路的完整理解。在这里,我们结合全细胞膜片钳电生理学、光遗传学和病毒工具,提供了Mu阿片样受体(MOR)、Delta阿片样受体(DOR)和Kappa阿片样受体(KOR)如何调节雄性和雌性小鼠的抑制传递的广泛表征。我们发现,在这些受体系统中,DOR激活在抑制边缘前PFC 2/3层自发抑制性传递方面更有效,而MOR对电诱发GABA释放的急性抑制更大,而KOR在抑制性传递中起次要作用。细胞类型特异性光遗传学显示,MOR和DOR在调节小白蛋白、生长抑素、胆囊收缩素和血管活性肠肽表达INs的抑制传递方面存在差异。最后,我们证明DOR通过同时对IN生理进行突触前和突触后修饰来调节抑制传递,而MOR功能根据细胞类型在躯体-树突或突触前信号之间变化。内源性阿片系统调节依赖于前额皮质(PFC)功能的行为。先前的研究已经描述了皮质GABAergic中间神经元中阿片受体的表达,但关于Mu (MOR), Delta (DOR)和Kappa阿片受体(KOR)如何调节不同的中间神经元亚型和微电路的详细了解尚未报道。我们使用全细胞膜片钳电生理学、基因工程小鼠和光遗传学来评估MOR、DOR和KOR对PFC抑制传递的调节,证明MOR和DOR对中间神经元的抑制在小鼠前边缘PFC的gaba能回路中表现出定性和定量的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信