Lihua Liu, Chan Oh, Mi Ae Lim, Sicong Zheng, Yudan Piao, Sun Ohm, Yujuan Shan, Shuyu Piao, Shan Shen, Young Il Kim, Ho-Ryun Won, Jae Won Chang, Min-Gyu Kim, Doh Hoon Kim, Ji Won Kim, Seung-Nam Jung, Bon Seok Koo
{"title":"Dual blockage of P-cadherin and c-Met synergistically inhibits the growth of head and neck cancer.","authors":"Lihua Liu, Chan Oh, Mi Ae Lim, Sicong Zheng, Yudan Piao, Sun Ohm, Yujuan Shan, Shuyu Piao, Shan Shen, Young Il Kim, Ho-Ryun Won, Jae Won Chang, Min-Gyu Kim, Doh Hoon Kim, Ji Won Kim, Seung-Nam Jung, Bon Seok Koo","doi":"10.1007/s13402-025-01061-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>P-cadherin (CDH3) is a transmembrane protein that plays a crucial role in maintaining the structural integrity of epithelial tissue and homeostasis. Its role in carcinogenesis remains a subject of debate, as its behavior can vary depending on the molecular context and the specific tumor cell model under study. In this study, we explored the role of P-cadherin in head and neck squamous cell carcinoma (HNSCC) and the mechanisms underlying its function.</p><p><strong>Methods: </strong>We analyzed P-cadherin expression in HNSCC patients using The Cancer Genome Atlas (TCGA), The Chungnam National University Hospital (CNUH) cohort and Gene Expression Omnibus (GEO) database. For in vitro functional analysis, we conducted proliferation, migration, invasion, and western blot assays after either suppressing or overexpressing P-cadherin. For in vivo functional analysis, we utilized mouse xenograft models.</p><p><strong>Results: </strong>P-cadherin was significantly overexpressed in tumor samples compared to normal samples in the TCGA-HNSCC and CNUH-HNSCC cohorts. P-cadherin knockdown resulted in decreased proliferation, migration, and invasion compared to control cells, while P-cadherin overexpression increased cell proliferation and migration in HNSCC cells. We discovered that c-Met functions as an upstream regulator of P-cadherin. Surprisingly, we found that P-cadherin knockdown increased the phosphorylation of c-Met and STAT3. Combining P-cadherin siRNA with the c-Met inhibitor SU11274 or c-Met siRNA resulted in a more effective reduction in HNSCC cell growth, both in vitro and in vivo, compared to either treatment alone.</p><p><strong>Conclusion: </strong>Our study uncovered a previously unknown aspect of P-cadherin-mediated c-Met regulation. The enhanced activation of c-Met/STAT3 following P-cadherin inhibition could be responsible for the survival of resistant tumor cells. Therefore, dual inhibition of P-cadherin and c-Met may be an effective approach for treating HNSCC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1019-1033"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01061-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: P-cadherin (CDH3) is a transmembrane protein that plays a crucial role in maintaining the structural integrity of epithelial tissue and homeostasis. Its role in carcinogenesis remains a subject of debate, as its behavior can vary depending on the molecular context and the specific tumor cell model under study. In this study, we explored the role of P-cadherin in head and neck squamous cell carcinoma (HNSCC) and the mechanisms underlying its function.
Methods: We analyzed P-cadherin expression in HNSCC patients using The Cancer Genome Atlas (TCGA), The Chungnam National University Hospital (CNUH) cohort and Gene Expression Omnibus (GEO) database. For in vitro functional analysis, we conducted proliferation, migration, invasion, and western blot assays after either suppressing or overexpressing P-cadherin. For in vivo functional analysis, we utilized mouse xenograft models.
Results: P-cadherin was significantly overexpressed in tumor samples compared to normal samples in the TCGA-HNSCC and CNUH-HNSCC cohorts. P-cadherin knockdown resulted in decreased proliferation, migration, and invasion compared to control cells, while P-cadherin overexpression increased cell proliferation and migration in HNSCC cells. We discovered that c-Met functions as an upstream regulator of P-cadherin. Surprisingly, we found that P-cadherin knockdown increased the phosphorylation of c-Met and STAT3. Combining P-cadherin siRNA with the c-Met inhibitor SU11274 or c-Met siRNA resulted in a more effective reduction in HNSCC cell growth, both in vitro and in vivo, compared to either treatment alone.
Conclusion: Our study uncovered a previously unknown aspect of P-cadherin-mediated c-Met regulation. The enhanced activation of c-Met/STAT3 following P-cadherin inhibition could be responsible for the survival of resistant tumor cells. Therefore, dual inhibition of P-cadherin and c-Met may be an effective approach for treating HNSCC.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.