{"title":"Excitatory projections from the nucleus reuniens to the medial prefrontal cortex modulate pain and depression-like behaviors in mice.","authors":"Shu-Ting Bao, Fang Rao, Cui Yin, Yong Niu, Jun-Li Cao, Cheng Xiao, Chunyi Zhou","doi":"10.1371/journal.pbio.3003170","DOIUrl":null,"url":null,"abstract":"<p><p>The medial prefrontal cortex (mPFC) is implicated in emotional processing, cognition, and pain sensation, moreover, its circuitry undergoes neuroplastic changes in chronic pain. Although the nucleus reuniens (RE) of the thalamus provides significant glutamatergic inputs to the mPFC, it remains unclear whether this projection contributes to plasticity changes in the mPFC and pain-related behaviors in chronic pain. Using fiber photometry, we demonstrated that RE neurons responded to pain stimulation and emotional changes. Optogenetic activation of RE neurons and their projections to the mPFC (RE-mPFC projection) elicits hyperalgesia and depression-like behaviors in naïve mice. In a neuropathic pain mouse model, RE neurons were hyperactive, and the RE-mPFC projection was enhanced with a marked preference for the part innervating GABAergic circuits in the mPFC to that controlling mPFC neurons projecting to the ventrolateral periaqueductal gray (vlPAG). Expectedly, optogenetic inhibition of RE neurons and the RE-mPFC projection ameliorated pain-like and depression-like behaviors in neuropathic pain mice. Additionally, chemogenetic inhibition of RE-mPFC neurons conferred analgesia in neuropathic pain mice exposed to both acute and chronic morphine. Our findings highlight the significant role of the RE-mPFC pathway in neuropathic pain comorbid with depression, suggesting its potential as a target for treatment of neuropathic pain.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 5","pages":"e3003170"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003170","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The medial prefrontal cortex (mPFC) is implicated in emotional processing, cognition, and pain sensation, moreover, its circuitry undergoes neuroplastic changes in chronic pain. Although the nucleus reuniens (RE) of the thalamus provides significant glutamatergic inputs to the mPFC, it remains unclear whether this projection contributes to plasticity changes in the mPFC and pain-related behaviors in chronic pain. Using fiber photometry, we demonstrated that RE neurons responded to pain stimulation and emotional changes. Optogenetic activation of RE neurons and their projections to the mPFC (RE-mPFC projection) elicits hyperalgesia and depression-like behaviors in naïve mice. In a neuropathic pain mouse model, RE neurons were hyperactive, and the RE-mPFC projection was enhanced with a marked preference for the part innervating GABAergic circuits in the mPFC to that controlling mPFC neurons projecting to the ventrolateral periaqueductal gray (vlPAG). Expectedly, optogenetic inhibition of RE neurons and the RE-mPFC projection ameliorated pain-like and depression-like behaviors in neuropathic pain mice. Additionally, chemogenetic inhibition of RE-mPFC neurons conferred analgesia in neuropathic pain mice exposed to both acute and chronic morphine. Our findings highlight the significant role of the RE-mPFC pathway in neuropathic pain comorbid with depression, suggesting its potential as a target for treatment of neuropathic pain.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.