{"title":"Mpox diagnosis at POC.","authors":"Defne Yigci, Önder Ergönül, Savas Tasoglu","doi":"10.1016/j.tibtech.2025.04.015","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing number of Monkeypox (Mpox) cases in non-endemic countries resulted in the WHO declaring a public health emergency of international concern. Accurate and timely diagnosis of Mpox has a critical role in containing the spread of infection. Diagnosis currently relies on PCR, which requires trained personnel and complex laboratory infrastructure. Thus, the development of point-of-care (POC) tools are essential to facilitate rapid, accurate, and user-friendly diagnosis. Here, we review POC diagnostic tools available for Mpox. We also discuss bottlenecks preventing the widespread implementation of POC platforms for Mpox diagnosis and potential strategies to address these limitations. Furthermore, we describe future directions, including the role of machine learning (ML) and deep learning (DL)-based models and the integration of integrated field-deployable platforms for Mpox diagnosis.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"2427-2439"},"PeriodicalIF":14.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.04.015","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing number of Monkeypox (Mpox) cases in non-endemic countries resulted in the WHO declaring a public health emergency of international concern. Accurate and timely diagnosis of Mpox has a critical role in containing the spread of infection. Diagnosis currently relies on PCR, which requires trained personnel and complex laboratory infrastructure. Thus, the development of point-of-care (POC) tools are essential to facilitate rapid, accurate, and user-friendly diagnosis. Here, we review POC diagnostic tools available for Mpox. We also discuss bottlenecks preventing the widespread implementation of POC platforms for Mpox diagnosis and potential strategies to address these limitations. Furthermore, we describe future directions, including the role of machine learning (ML) and deep learning (DL)-based models and the integration of integrated field-deployable platforms for Mpox diagnosis.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).