Volatile MoS2 Memristors with Lateral Silver Ion Migration for Artificial Neuron Applications.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-01-27 eCollection Date: 2025-05-01 DOI:10.1002/smsc.202400523
Sofía Cruces, Mohit Dineshkumar Ganeriwala, Jimin Lee, Lukas Völkel, Dennis Braun, Annika Grundmann, Ke Ran, Enrique González Marín, Holger Kalisch, Michael Heuken, Andrei Vescan, Joachim Mayer, Andrés Godoy, Alwin Daus, Max Christian Lemme
{"title":"Volatile MoS<sub>2</sub> Memristors with Lateral Silver Ion Migration for Artificial Neuron Applications.","authors":"Sofía Cruces, Mohit Dineshkumar Ganeriwala, Jimin Lee, Lukas Völkel, Dennis Braun, Annika Grundmann, Ke Ran, Enrique González Marín, Holger Kalisch, Michael Heuken, Andrei Vescan, Joachim Mayer, Andrés Godoy, Alwin Daus, Max Christian Lemme","doi":"10.1002/smsc.202400523","DOIUrl":null,"url":null,"abstract":"<p><p>Layered 2D semiconductors have shown enhanced ion migration capabilities along their van der Waals (vdW) gaps and on their surfaces. This effect can be employed for resistive switching (RS) in devices for emerging memories, selectors, and neuromorphic computing. To date, all lateral molybdenum disulfide (MoS<sub>2</sub>)-based volatile RS devices with silver (Ag) ion migration have been demonstrated using exfoliated, single-crystal MoS<sub>2</sub> flakes requiring a forming step to enable RS. Herein, present volatile RS with multilayer MoS<sub>2</sub> grown by metal-organic chemical vapor deposition (MOCVD) with repeatable forming-free operation is presented. The devices show highly reproducible volatile RS with low operating voltages of ≈2 V and fast-switching times down to 130 ns considering their micrometer-scale dimensions. The switching mechanism is investigated based on Ag ion surface migration through transmission electron microscopy, electronic transport modeling, and density functional theory. Finally, a physics-based compact model is developed and the implementation of the volatile memristors as artificial neurons in neuromorphic systems is exploredd.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 5","pages":"2400523"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered 2D semiconductors have shown enhanced ion migration capabilities along their van der Waals (vdW) gaps and on their surfaces. This effect can be employed for resistive switching (RS) in devices for emerging memories, selectors, and neuromorphic computing. To date, all lateral molybdenum disulfide (MoS2)-based volatile RS devices with silver (Ag) ion migration have been demonstrated using exfoliated, single-crystal MoS2 flakes requiring a forming step to enable RS. Herein, present volatile RS with multilayer MoS2 grown by metal-organic chemical vapor deposition (MOCVD) with repeatable forming-free operation is presented. The devices show highly reproducible volatile RS with low operating voltages of ≈2 V and fast-switching times down to 130 ns considering their micrometer-scale dimensions. The switching mechanism is investigated based on Ag ion surface migration through transmission electron microscopy, electronic transport modeling, and density functional theory. Finally, a physics-based compact model is developed and the implementation of the volatile memristors as artificial neurons in neuromorphic systems is exploredd.

具有银离子横向迁移的挥发性二硫化钼忆阻器在人工神经元中的应用。
层状二维半导体在其范德华(vdW)间隙和表面上显示出增强的离子迁移能力。这种效应可以应用于新兴存储器、选择器和神经形态计算设备中的电阻开关(RS)。迄今为止,所有基于二硫化钼(MoS2)的具有银(Ag)离子迁移的横向挥发性RS器件都已被证明使用脱落的单晶MoS2薄片,需要一个形成步骤来实现RS。本文介绍了通过金属有机化学气相沉积(MOCVD)在可重复的无形成操作下生长多层MoS2的挥发性RS。考虑到其微米尺度尺寸,该器件具有高重复性的挥发性RS,工作电压低约2 V,开关时间短至130 ns。通过透射电镜、电子输运模型和密度泛函理论研究了Ag离子表面迁移的开关机制。最后,建立了一个基于物理的紧凑模型,并探讨了易失性忆阻器在神经形态系统中作为人工神经元的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信