{"title":"[Programmed cell death in paramyxovirus infection].","authors":"Ye Liu, Yilong Wang, Zhixu He, Zhengyan Zhao","doi":"10.3724/zdxbyxb-2024-0512","DOIUrl":null,"url":null,"abstract":"<p><p>Paramyxoviruses are important respiratory pathogens with substantial clinical relevance in pediatric infectious diseases. During infection, multiple forms of programmed cell death (PCD) may be induced, and this plays pivotal roles in viral replication, dissemination, and host immune responses, thereby profoundly influencing the viral life cycle and disease progression. On one hand, PCD facilitates the clearance of infected cells, restricts viral spread, and activates host immune defenses, thereby enhancing antiviral immunity. On the other hand, excessive or dysregulated cell death may lead to tissue damage and immune imbalance, creating a microenvironment conducive to viral replication and exacerbating disease severity. For instance, apoptosis-mediated by both extrinsic and intrinsic pathways-contributes to infection control but may also be hijacked by viruses to promote dissemination. Pyroptosis, driven by inflammasome activation, triggers lytic cell death and the release of pro-inflammatory cytokines. Necroptosis, mediated by the RIPK1-RIPK3-MLKL signaling axis, and pyroptosis both amplify innate immune responses but may concurrently induce inflammatory dysregulation. Immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns and neoantigens, activates antigen-specific immune responses and holds therapeutic potential for antiviral and antitumor interventions. Emerging evidence suggests that ferroptosis, through the modulation of iron metabolism and associated transporters, may also participate in viral replication and infected cell clearance. This review comprehensively summarizes the roles of apoptosis, pyroptosis, necroptosis, ICD, and ferroptosis in paramyxovirus infection, aiming to deepen the understanding of paramyxovirus pathogenesis and to provide insights for developing novel antiviral strategies.</p>","PeriodicalId":24007,"journal":{"name":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","volume":" ","pages":"399-410"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/zdxbyxb-2024-0512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Paramyxoviruses are important respiratory pathogens with substantial clinical relevance in pediatric infectious diseases. During infection, multiple forms of programmed cell death (PCD) may be induced, and this plays pivotal roles in viral replication, dissemination, and host immune responses, thereby profoundly influencing the viral life cycle and disease progression. On one hand, PCD facilitates the clearance of infected cells, restricts viral spread, and activates host immune defenses, thereby enhancing antiviral immunity. On the other hand, excessive or dysregulated cell death may lead to tissue damage and immune imbalance, creating a microenvironment conducive to viral replication and exacerbating disease severity. For instance, apoptosis-mediated by both extrinsic and intrinsic pathways-contributes to infection control but may also be hijacked by viruses to promote dissemination. Pyroptosis, driven by inflammasome activation, triggers lytic cell death and the release of pro-inflammatory cytokines. Necroptosis, mediated by the RIPK1-RIPK3-MLKL signaling axis, and pyroptosis both amplify innate immune responses but may concurrently induce inflammatory dysregulation. Immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns and neoantigens, activates antigen-specific immune responses and holds therapeutic potential for antiviral and antitumor interventions. Emerging evidence suggests that ferroptosis, through the modulation of iron metabolism and associated transporters, may also participate in viral replication and infected cell clearance. This review comprehensively summarizes the roles of apoptosis, pyroptosis, necroptosis, ICD, and ferroptosis in paramyxovirus infection, aiming to deepen the understanding of paramyxovirus pathogenesis and to provide insights for developing novel antiviral strategies.