A circadian behavioral analysis suite for real-time classification of daily rhythms in complex behaviors.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Logan J Perry, Gavin E Ratcliff, Arthur Mayo, Blanca E Perez, Larissa Rays Wahba, K L Nikhil, William C Lenzen, Yangyuan Li, Jordan Mar, Isabella Farhy-Tselnicker, Wanhe Li, Jeff R Jones
{"title":"A circadian behavioral analysis suite for real-time classification of daily rhythms in complex behaviors.","authors":"Logan J Perry, Gavin E Ratcliff, Arthur Mayo, Blanca E Perez, Larissa Rays Wahba, K L Nikhil, William C Lenzen, Yangyuan Li, Jordan Mar, Isabella Farhy-Tselnicker, Wanhe Li, Jeff R Jones","doi":"10.1016/j.crmeth.2025.101050","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term analysis of animal behavior has been limited by reliance on real-time sensors or manual scoring. Existing machine learning tools can automate analysis but often fail under variable conditions or ignore temporal dynamics. We developed a scalable pipeline for continuous, real-time acquisition and classification of behavior across multiple animals and conditions. At its core is a self-supervised vision model paired with a lightweight classifier that enables robust performance with minimal manual labeling. Our system achieves expert-level performance and can operate indefinitely across diverse recording environments. As a proof-of-concept, we recorded 97 mice over 2 weeks to test whether sex hormones influence circadian behaviors. We discovered sex- and estrogen-dependent rhythms in behaviors such as digging and nesting. We introduce the Circadian Behavioral Analysis Suite (CBAS), a modular toolkit that supports high-throughput, long-timescale behavioral phenotyping, allowing for the temporal analysis of behaviors that were previously difficult or impossible to observe.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 5","pages":"101050"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term analysis of animal behavior has been limited by reliance on real-time sensors or manual scoring. Existing machine learning tools can automate analysis but often fail under variable conditions or ignore temporal dynamics. We developed a scalable pipeline for continuous, real-time acquisition and classification of behavior across multiple animals and conditions. At its core is a self-supervised vision model paired with a lightweight classifier that enables robust performance with minimal manual labeling. Our system achieves expert-level performance and can operate indefinitely across diverse recording environments. As a proof-of-concept, we recorded 97 mice over 2 weeks to test whether sex hormones influence circadian behaviors. We discovered sex- and estrogen-dependent rhythms in behaviors such as digging and nesting. We introduce the Circadian Behavioral Analysis Suite (CBAS), a modular toolkit that supports high-throughput, long-timescale behavioral phenotyping, allowing for the temporal analysis of behaviors that were previously difficult or impossible to observe.

一个昼夜行为分析套件,用于复杂行为的日常节奏的实时分类。
对动物行为的长期分析一直受到实时传感器或人工评分的限制。现有的机器学习工具可以自动分析,但往往在可变条件下失败或忽略时间动态。我们开发了一个可扩展的管道,用于跨多种动物和条件的连续、实时采集和行为分类。它的核心是一个自我监督的视觉模型,搭配一个轻量级的分类器,以最少的人工标记实现鲁棒性能。我们的系统达到了专家级的性能,可以在不同的记录环境中无限期地运行。作为概念验证,我们在两周内记录了97只小鼠,以测试性激素是否影响昼夜行为。我们在挖掘和筑巢等行为中发现了依赖性和雌激素的节律。我们介绍了昼夜行为分析套件(CBAS),这是一个模块化工具包,支持高通量,长时间尺度的行为表型,允许对以前难以或不可能观察到的行为进行时间分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信