Robotic monitoring of European habitats: a labeled dataset for plant detection in Annex I habitats of Italy.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Giovanni Di Lorenzo, Franco Angelini, Michele Pierallini, Simone Tolomei, Davide De Benedittis, Agnese Denaro, Giovanni Rivieccio, Maria Carmela Caria, Federica Bonini, Anna Grassi, Leopoldo de Simone, Emanuele Fanfarillo, Tiberio Fiaschi, Simona Maccherini, Barbara Valle, Marina Serena Borgatti, Simonetta Bagella, Daniela Gigante, Claudia Angiolini, Marco Caccianiga, Manolo Garabini
{"title":"Robotic monitoring of European habitats: a labeled dataset for plant detection in Annex I habitats of Italy.","authors":"Giovanni Di Lorenzo, Franco Angelini, Michele Pierallini, Simone Tolomei, Davide De Benedittis, Agnese Denaro, Giovanni Rivieccio, Maria Carmela Caria, Federica Bonini, Anna Grassi, Leopoldo de Simone, Emanuele Fanfarillo, Tiberio Fiaschi, Simona Maccherini, Barbara Valle, Marina Serena Borgatti, Simonetta Bagella, Daniela Gigante, Claudia Angiolini, Marco Caccianiga, Manolo Garabini","doi":"10.1038/s41597-025-05182-7","DOIUrl":null,"url":null,"abstract":"<p><p>The present data descriptor presents a dataset designed for the detection of plant species in various habitats of the European Union. This dataset is based on images captured using multiple different hardware including quadrupedal robot ANYmal C, referring to ecologically important species to assess the presence and conservation status in Annex I habitats 2110, 2120, 6210*, 8110, 8120, and 9210*. Plant scientists and robotic engineers gathered the data in key Italian protected areas and labeled it using YOLOtxt format. Researchers in vegetation science, habitat monitoring, robotics, machine learning, and biodiversity conservation can access the dataset through Zenodo. The ultimate goal of this collaborative effort was to create a dataset that can be used to train artificial intelligence models to assess parameters that enable robotic habitat monitoring. The availability of this dataset may enhance future studies and conservation initiatives for Annex I habitats inside and outside the Natura 2000 network. The dataset and the methods used to obtain it are fully described, highlighting the significance of interdisciplinary cooperation in habitat monitoring.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"822"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05182-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The present data descriptor presents a dataset designed for the detection of plant species in various habitats of the European Union. This dataset is based on images captured using multiple different hardware including quadrupedal robot ANYmal C, referring to ecologically important species to assess the presence and conservation status in Annex I habitats 2110, 2120, 6210*, 8110, 8120, and 9210*. Plant scientists and robotic engineers gathered the data in key Italian protected areas and labeled it using YOLOtxt format. Researchers in vegetation science, habitat monitoring, robotics, machine learning, and biodiversity conservation can access the dataset through Zenodo. The ultimate goal of this collaborative effort was to create a dataset that can be used to train artificial intelligence models to assess parameters that enable robotic habitat monitoring. The availability of this dataset may enhance future studies and conservation initiatives for Annex I habitats inside and outside the Natura 2000 network. The dataset and the methods used to obtain it are fully described, highlighting the significance of interdisciplinary cooperation in habitat monitoring.

欧洲生境机器人监测:意大利附件一生境植物检测的标记数据集。
目前的数据描述符提供了一个数据集,用于检测欧盟各种栖息地的植物物种。该数据集基于包括四足机器人ANYmal C在内的多种不同硬件拍摄的图像,参考生态重要物种,评估了附件一栖息地2110,2120,6210*,8110,8120和9210*的存在和保护状况。植物科学家和机器人工程师收集了意大利主要保护区的数据,并使用YOLOtxt格式进行标记。植被科学、栖息地监测、机器人、机器学习和生物多样性保护的研究人员可以通过Zenodo访问数据集。这项合作努力的最终目标是创建一个数据集,可用于训练人工智能模型,以评估能够实现机器人栖息地监测的参数。该数据集的可用性可以加强未来对附件一生境的研究和保护措施,这些生境在Natura 2000网络内外。对数据集及其获取方法进行了全面描述,强调了跨学科合作在生境监测中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信