Rui Wang, Lei Han, Man-Na Zhang, Li-Feng Wang, Qing-An Huang
{"title":"Nonlinear distortion of nonreciprocal transmission in parity-time-symmetric silicon micromechanical resonators.","authors":"Rui Wang, Lei Han, Man-Na Zhang, Li-Feng Wang, Qing-An Huang","doi":"10.1038/s41378-025-00952-0","DOIUrl":null,"url":null,"abstract":"<p><p>Parity-time (PT) symmetric resonators have an exact phase with real frequency eigenvalues and a broken phase with complex-conjugate frequency eigenvalues. In the presence of nonlinear gain, the PT-symmetric resonator exhibits nonreciprocal transmission when it is biased at the broken phase, which promises applications for isolators and circulators in modern communication systems. The nonlinear distortion performance is one of the most important metrics in most electronic applications where linearity is critical. This article provides the first experimental results of nonlinear distortion of nonreciprocal transmission in a pair of electrically coupled silicon micromechanical resonators at the broken phase. The results show the 1 dB gain compression point (P1dB) with 5 dBm and the input-referred third-order intercept point (IIP3) with 11.5 dBm.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"99"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00952-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Parity-time (PT) symmetric resonators have an exact phase with real frequency eigenvalues and a broken phase with complex-conjugate frequency eigenvalues. In the presence of nonlinear gain, the PT-symmetric resonator exhibits nonreciprocal transmission when it is biased at the broken phase, which promises applications for isolators and circulators in modern communication systems. The nonlinear distortion performance is one of the most important metrics in most electronic applications where linearity is critical. This article provides the first experimental results of nonlinear distortion of nonreciprocal transmission in a pair of electrically coupled silicon micromechanical resonators at the broken phase. The results show the 1 dB gain compression point (P1dB) with 5 dBm and the input-referred third-order intercept point (IIP3) with 11.5 dBm.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.