Jonathan Stelter, Kilian Weiss, Veronika Spieker, Julia A Schnabel, Rickmer F Braren, Dimitrios C Karampinos
{"title":"B<sub>0</sub> navigator enables respiratory motion navigation in radial stack-of-stars liver Look-Locker T<sub>1</sub> mapping.","authors":"Jonathan Stelter, Kilian Weiss, Veronika Spieker, Julia A Schnabel, Rickmer F Braren, Dimitrios C Karampinos","doi":"10.1002/mrm.30567","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> self-navigation approach to estimate respiratory motion for motion-corrected liver <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping using a Look-Locker acquisition with radial stack-of-stars trajectory.</p><p><strong>Methods: </strong>The proposed method derives 1D field-map profiles from the oversampled k-space center to estimate a normalized breathing curve and the <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> variation amplitude for each slice and coil. <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> drift and contrast variations, inherent to the Look-Locker acquisition, were modeled and corrected by fitting and demodulating drift and offset terms. The breathing curve was employed to bin data into motion states for motion-resolved reconstruction, followed by water-specific <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping. Simulations with an anatomical body model and in vivo experiments with a Look-Locker multi-echo gradient echo sequence were performed to validate the technique. The estimated normalized breathing curve was compared with magnitude- and phase-based self-navigation approaches using principal component analysis.</p><p><strong>Results: </strong>The proposed <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> self-navigation reliably estimated the normalized breathing curve and the <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> variation amplitude in simulations and in vivo. <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> variation amplitudes increased with greater tissue displacement, with median values across slices and coils ranging from 4 to 15 Hz at 3 T in volunteers. Motion-resolved reconstruction using the estimated breathing curve reduced motion artifacts and improved image and <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping quality compared to motion-averaged reconstruction.</p><p><strong>Conclusion: </strong><math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> self-navigation allows estimation of respiratory motion in acquisitions with varying contrast and quantifies the <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> variation amplitude, providing a possible surrogate signal for tissue displacement and enabling self-gated liver <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping using a Look-Locker approach.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30567","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To develop a self-navigation approach to estimate respiratory motion for motion-corrected liver mapping using a Look-Locker acquisition with radial stack-of-stars trajectory.
Methods: The proposed method derives 1D field-map profiles from the oversampled k-space center to estimate a normalized breathing curve and the variation amplitude for each slice and coil. drift and contrast variations, inherent to the Look-Locker acquisition, were modeled and corrected by fitting and demodulating drift and offset terms. The breathing curve was employed to bin data into motion states for motion-resolved reconstruction, followed by water-specific mapping. Simulations with an anatomical body model and in vivo experiments with a Look-Locker multi-echo gradient echo sequence were performed to validate the technique. The estimated normalized breathing curve was compared with magnitude- and phase-based self-navigation approaches using principal component analysis.
Results: The proposed self-navigation reliably estimated the normalized breathing curve and the variation amplitude in simulations and in vivo. variation amplitudes increased with greater tissue displacement, with median values across slices and coils ranging from 4 to 15 Hz at 3 T in volunteers. Motion-resolved reconstruction using the estimated breathing curve reduced motion artifacts and improved image and mapping quality compared to motion-averaged reconstruction.
Conclusion: self-navigation allows estimation of respiratory motion in acquisitions with varying contrast and quantifies the variation amplitude, providing a possible surrogate signal for tissue displacement and enabling self-gated liver mapping using a Look-Locker approach.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.