Quality by design (QbD) liposomes engineering using 3D printed Tesla microfluidic arrays.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kanza Rahali, Atabak Ghanizadeh Tabriz, Dennis Douroumis
{"title":"Quality by design (QbD) liposomes engineering using 3D printed Tesla microfluidic arrays.","authors":"Kanza Rahali, Atabak Ghanizadeh Tabriz, Dennis Douroumis","doi":"10.1080/08982104.2025.2504018","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic arrays have been successfully implemented for the design and development of liposome nanoparticles. In this study we have applied a Quality by Design (QbD) approach to investigate the effect of 3D printed Tesla microfluidic designs (direct and serpentine shape) on the liposome nanoparticles in comparison with conventional ultrasonication methodology. Critical processing parameters (CPP) such as the shape, length and channel width of the Tesla arrays were also studied. Furthermore, the effect of critical material attributes (CMA), including the length of the phosphatidylcholine (PC) carbon chain and the lipid:cholesterol ratio on the produced nanoparticles was investigated. The obtained findings revealed that both CPP and CMA play a key role in the formation of liposome nanoparticles. The liposome size was decreasing with a descending order for plain array > Tesla <sub>(serpentine)</sub> > Tesla <sub>(direct)</sub> > ultrasonication. However, improved Tesla arrays with narrow channel width (200 μm) produced the smallest liposome particle size (74 nm). The PC carbon chain length was critical for the obtained particle size where Lipoid S75 produced smaller nanoparticles when compared to Lipoid E80. The increase of cholesterol content resulted in liposome size reduction and decreased zeta-potential.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-13"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2025.2504018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic arrays have been successfully implemented for the design and development of liposome nanoparticles. In this study we have applied a Quality by Design (QbD) approach to investigate the effect of 3D printed Tesla microfluidic designs (direct and serpentine shape) on the liposome nanoparticles in comparison with conventional ultrasonication methodology. Critical processing parameters (CPP) such as the shape, length and channel width of the Tesla arrays were also studied. Furthermore, the effect of critical material attributes (CMA), including the length of the phosphatidylcholine (PC) carbon chain and the lipid:cholesterol ratio on the produced nanoparticles was investigated. The obtained findings revealed that both CPP and CMA play a key role in the formation of liposome nanoparticles. The liposome size was decreasing with a descending order for plain array > Tesla (serpentine) > Tesla (direct) > ultrasonication. However, improved Tesla arrays with narrow channel width (200 μm) produced the smallest liposome particle size (74 nm). The PC carbon chain length was critical for the obtained particle size where Lipoid S75 produced smaller nanoparticles when compared to Lipoid E80. The increase of cholesterol content resulted in liposome size reduction and decreased zeta-potential.

3D打印特斯拉微流控阵列的设计质量脂质体工程。
微流控阵列已成功应用于脂质体纳米颗粒的设计和研制。在这项研究中,我们采用了设计质量(QbD)方法来研究3D打印特斯拉微流体设计(直接和蛇形)对脂质体纳米颗粒的影响,并与传统超声方法进行了比较。对特斯拉阵列的形状、长度和通道宽度等关键工艺参数进行了研究。此外,还考察了磷脂酰胆碱(PC)碳链长度和脂胆固醇比等关键材料属性对纳米颗粒的影响。结果表明,CPP和CMA在脂质体纳米颗粒的形成中起关键作用。普通阵列>特斯拉(蛇形)>特斯拉(直接)>超声显示脂质体大小依次递减。然而,窄通道宽度(200 μm)的改进特斯拉阵列产生的脂质体颗粒尺寸最小(74 nm)。PC碳链长度对获得的颗粒大小至关重要,其中与脂质体E80相比,脂质体S75产生的纳米颗粒更小。胆固醇含量增加导致脂质体尺寸减小,ζ电位降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信