Enhancing in vitro osteogenic differentiation of mesenchymal stem cells via sustained dexamethasone delivery in 3D-Printed hybrid scaffolds based on polycaprolactone-nanohydroxyapatite/alginate-gelatin for bone regeneration.
Parastoo Noory, Ahmad Reza Farmani, Jafar Ai, Naghmeh Bahrami, Mohammad Bayat, Somayeh Ebrahimi-Barough, Ali Farzin, Shima Shojaie, Hamed Hajmoradi, Abdolreza Mohamadnia, Arash Goodarzi
{"title":"Enhancing in vitro osteogenic differentiation of mesenchymal stem cells via sustained dexamethasone delivery in 3D-Printed hybrid scaffolds based on polycaprolactone-nanohydroxyapatite/alginate-gelatin for bone regeneration.","authors":"Parastoo Noory, Ahmad Reza Farmani, Jafar Ai, Naghmeh Bahrami, Mohammad Bayat, Somayeh Ebrahimi-Barough, Ali Farzin, Shima Shojaie, Hamed Hajmoradi, Abdolreza Mohamadnia, Arash Goodarzi","doi":"10.1186/s13036-025-00514-y","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the natural ability of bone repair, its limitations have led to advanced organic-inorganic-based biomimetic scaffolds and sustained drug release approaches. Particularly, dexamethasone (DEX), a widely used synthetic glucocorticoid, has been shown to increase the expression of bone-related genes during the osteogenesis process. This study aims to develop a hybrid 3D-printed scaffold for controlled delivery of dexamethasone. Hence, hybrid scaffolds were fabricated using a layer-by-layer 3D-printing of combined materials comprising polycaprolactone (PCL)-nanohydroxyapatite (nHA) composite, and DEX-loaded PCL microparticles embedded in the alginate-gelatin hydrogel. Encapsulation efficiency, loading capacity, and in vitro kinetics of DEX release were evaluated. Osteogenic differentiation of human endometrial mesenchymal stem cells (hEnMSCs) on DEX-loaded hybrid scaffolds was assessed by evaluating osteogenic gene expression levels (collagen I, osteonectin, RUNX2), alkaline phosphatase (ALP) activity, and scaffold mineralization. The hybrid scaffolds exhibited favorable morphology, mechanical-properties, biocompatibility, and biodegradability, enhancing osteogenesis of hEnMSCs. DEX-loaded PCL microparticles within hybrid scaffolds exhibited a controlled release pattern and promoted osteogenic differentiation during the sustained release period through a significant increase in osteonectin and COL1A1 expression. Also, increased mineralization was demonstrated by SEM and alizarin red staining. This study proposes that drug-loaded 3D-printed hybrid organic-inorganic nanocomposite scaffolds are promising for advanced bone tissue engineering applications.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"48"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00514-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the natural ability of bone repair, its limitations have led to advanced organic-inorganic-based biomimetic scaffolds and sustained drug release approaches. Particularly, dexamethasone (DEX), a widely used synthetic glucocorticoid, has been shown to increase the expression of bone-related genes during the osteogenesis process. This study aims to develop a hybrid 3D-printed scaffold for controlled delivery of dexamethasone. Hence, hybrid scaffolds were fabricated using a layer-by-layer 3D-printing of combined materials comprising polycaprolactone (PCL)-nanohydroxyapatite (nHA) composite, and DEX-loaded PCL microparticles embedded in the alginate-gelatin hydrogel. Encapsulation efficiency, loading capacity, and in vitro kinetics of DEX release were evaluated. Osteogenic differentiation of human endometrial mesenchymal stem cells (hEnMSCs) on DEX-loaded hybrid scaffolds was assessed by evaluating osteogenic gene expression levels (collagen I, osteonectin, RUNX2), alkaline phosphatase (ALP) activity, and scaffold mineralization. The hybrid scaffolds exhibited favorable morphology, mechanical-properties, biocompatibility, and biodegradability, enhancing osteogenesis of hEnMSCs. DEX-loaded PCL microparticles within hybrid scaffolds exhibited a controlled release pattern and promoted osteogenic differentiation during the sustained release period through a significant increase in osteonectin and COL1A1 expression. Also, increased mineralization was demonstrated by SEM and alizarin red staining. This study proposes that drug-loaded 3D-printed hybrid organic-inorganic nanocomposite scaffolds are promising for advanced bone tissue engineering applications.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.