Anti-lung cancer activity of lotusine in non-small cell lung cancer HCC827 via reducing proliferation, oxidative stress, induction of apoptosis, and G0/G1 cell cycle arrest via suppressing EGFR-Akt-ERK signalling.
{"title":"Anti-lung cancer activity of lotusine in non-small cell lung cancer HCC827 via reducing proliferation, oxidative stress, induction of apoptosis, and G0/G1 cell cycle arrest via suppressing EGFR-Akt-ERK signalling.","authors":"Yuanmin Lan, Jing Sun, Jiqing Xu, Xiaoying Chen","doi":"10.1007/s11626-025-01048-9","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide, with resistance to targeted therapies and the need for novel therapeutic agents driving ongoing research. In this study, we investigated the anti-lung cancer activity of lotusine, a natural alkaloid, in the A549 (non-EGFR mutant), and EGFR-mutant HCC827 NSCLC cell line (deletion in exon 19). Our results demonstrated that lotusine significantly inhibited cell proliferation in a concentration- and time-dependent manner of HCC827 cells in comparison to A549 cells. Mechanistic analysis revealed that lotusine induced apoptosis in HCC827 cells, as evidenced by increased expression of pro-apoptotic markers (Bax and cleaved caspase-3) and decreased levels of anti-apoptotic proteins (Bcl-2). Cell cycle analysis indicated that lotusine caused G0/G1 phase arrest. Importantly, lotusine exerted its effects through the inhibition of the epidermal growth factor receptor (EGFR) EGFR-Akt-ERK signaling pathway, as evidenced by reduction of p-EGFR, p-Akt, and p-ERK in a western blot analysis in HCC827 cells. These findings suggest that lotusine exerts potent anti-cancer effects via a multifaceted mechanism, including inhibition of proliferation, apoptosis induction, and cell cycle arrest, predominantly mediated by EGFR suppression. This study highlights lotusine as a promising therapeutic candidate for the treatment of EGFR-mutant NSCLC and provides insights into its molecular mechanisms of action, paving the way for further preclinical and clinical evaluations.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"450-458"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01048-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide, with resistance to targeted therapies and the need for novel therapeutic agents driving ongoing research. In this study, we investigated the anti-lung cancer activity of lotusine, a natural alkaloid, in the A549 (non-EGFR mutant), and EGFR-mutant HCC827 NSCLC cell line (deletion in exon 19). Our results demonstrated that lotusine significantly inhibited cell proliferation in a concentration- and time-dependent manner of HCC827 cells in comparison to A549 cells. Mechanistic analysis revealed that lotusine induced apoptosis in HCC827 cells, as evidenced by increased expression of pro-apoptotic markers (Bax and cleaved caspase-3) and decreased levels of anti-apoptotic proteins (Bcl-2). Cell cycle analysis indicated that lotusine caused G0/G1 phase arrest. Importantly, lotusine exerted its effects through the inhibition of the epidermal growth factor receptor (EGFR) EGFR-Akt-ERK signaling pathway, as evidenced by reduction of p-EGFR, p-Akt, and p-ERK in a western blot analysis in HCC827 cells. These findings suggest that lotusine exerts potent anti-cancer effects via a multifaceted mechanism, including inhibition of proliferation, apoptosis induction, and cell cycle arrest, predominantly mediated by EGFR suppression. This study highlights lotusine as a promising therapeutic candidate for the treatment of EGFR-mutant NSCLC and provides insights into its molecular mechanisms of action, paving the way for further preclinical and clinical evaluations.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.