Luciana Renata de Oliveira, Matheus Gimenez Fernandes, José Salvatore Leister Patane, Jean-Marc Schwartz, José Eduardo Krieger, Christoph Ballestrem, Ayumi Aurea Miyakawa
{"title":"Exploring focal adhesion data: dynamic parameter extraction from FRAP and FLAP experiments using chemical master equation.","authors":"Luciana Renata de Oliveira, Matheus Gimenez Fernandes, José Salvatore Leister Patane, Jean-Marc Schwartz, José Eduardo Krieger, Christoph Ballestrem, Ayumi Aurea Miyakawa","doi":"10.3389/fmolb.2025.1587608","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic behavior of proteins within cellular structures can be studied using fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photobleaching (FLAP) experiments. These techniques provide insights into molecular mobility by estimating parameters such as turnover rates <math><mrow><mo>(</mo> <mrow> <msub><mrow><mi>k</mi></mrow> <mrow><mi>T</mi></mrow> </msub> </mrow> <mo>)</mo></mrow> </math> and diffusion coefficients (D). However, traditional deterministic models often rely on simplifying assumptions that may not fully capture the stochastic nature of molecular interactions. In this study, we developed a novel stochastic model based on the analytical solution of the chemical master equation to extract dynamic parameters from FRAP and FLAP experiments in the focal adhesion (FA) network. Our approach extends beyond standard FRAP/FLAP analysis by inferring additional parameters, such as protein-specific entry <math><mrow><mo>(</mo> <mrow> <msub><mrow><mi>k</mi></mrow> <mrow><mi>I</mi> <mi>n</mi></mrow> </msub> </mrow> <mo>)</mo></mrow> </math> and exit <math><mrow><mo>(</mo> <mrow> <msub><mrow><mi>k</mi></mrow> <mrow><mi>Out</mi></mrow> </msub> </mrow> <mo>)</mo></mrow> </math> rates, allowing a deeper understanding of protein turnover and interactions. To validate our model, we analyzed previously published experimental data from NIH3T3 fibroblasts expressing GFP-tagged FA proteins, including tensin 1, talin, vinculin, <math><mrow><mi>α</mi></mrow> </math> -actinin, ILK, <math><mrow><mi>α</mi></mrow> </math> -parvin, kindlin-2, paxillin, p130Cas, VASP, FAK, and zyxin. These proteins participate in mechanotransduction, cytoskeletal organization, and adhesion regulation, exhibiting distinct dynamic behaviors within FA structures. Furthermore, we constructed an interaction network to quantify how vinculin and actin influence talin dynamics, leveraging our model to uncover their regulatory roles in FA turnover. Using an analytical solution of the chemical master equation, our framework provides a generalizable approach for studying protein dynamics in any system where FRAP and FLAP data are available. It can be applied to new experimental datasets and reanalyzed from existing data, revealing previously inaccessible molecular interactions and enhancing our understanding of FA dynamics and broader cellular processes.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1587608"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1587608","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic behavior of proteins within cellular structures can be studied using fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photobleaching (FLAP) experiments. These techniques provide insights into molecular mobility by estimating parameters such as turnover rates and diffusion coefficients (D). However, traditional deterministic models often rely on simplifying assumptions that may not fully capture the stochastic nature of molecular interactions. In this study, we developed a novel stochastic model based on the analytical solution of the chemical master equation to extract dynamic parameters from FRAP and FLAP experiments in the focal adhesion (FA) network. Our approach extends beyond standard FRAP/FLAP analysis by inferring additional parameters, such as protein-specific entry and exit rates, allowing a deeper understanding of protein turnover and interactions. To validate our model, we analyzed previously published experimental data from NIH3T3 fibroblasts expressing GFP-tagged FA proteins, including tensin 1, talin, vinculin, -actinin, ILK, -parvin, kindlin-2, paxillin, p130Cas, VASP, FAK, and zyxin. These proteins participate in mechanotransduction, cytoskeletal organization, and adhesion regulation, exhibiting distinct dynamic behaviors within FA structures. Furthermore, we constructed an interaction network to quantify how vinculin and actin influence talin dynamics, leveraging our model to uncover their regulatory roles in FA turnover. Using an analytical solution of the chemical master equation, our framework provides a generalizable approach for studying protein dynamics in any system where FRAP and FLAP data are available. It can be applied to new experimental datasets and reanalyzed from existing data, revealing previously inaccessible molecular interactions and enhancing our understanding of FA dynamics and broader cellular processes.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.