Alaa Mahran , Fadak Howaili , Rajendra Bhadane , Rathna Mathiyalagan , Tapani Viitala , Xiaoju Wang , Jessica M. Rosenholm
{"title":"Functional enzyme delivery via surface-modified mesoporous silica nanoparticles in 3D printed nanocomposite hydrogels","authors":"Alaa Mahran , Fadak Howaili , Rajendra Bhadane , Rathna Mathiyalagan , Tapani Viitala , Xiaoju Wang , Jessica M. Rosenholm","doi":"10.1016/j.ejps.2025.107132","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional (3D) printed hydrogel-based scaffolds have emerged as promising for the delivery of biologicals. Recently, we developed a printable plant-based nanocomposite hydrogel, composed of anionic cellulose nanofibers (T-CNF) and methacrylated galactoglucomannan (GGMMA), reinforced with mesoporous silica nanoparticles (MSNs) of different surface charges. However, ensuring the biological activity of the delivered biomolecules requires further investigation to validate the functionality of the developed biomaterial. To investigate this, in this study, horseradish peroxidase (HRP) and lysozyme were selected as distinct model proteins, assessing their immobilization stability and biological activity after MSN immobilization and 3D printing. The interactions between the enzymes and differently surface-modified MSNs were explored using multi-parametric surface plasmon resonance (MP-SPR) and molecular dynamics (MD) simulations. We observed that MSN surface charge is key to the extent of enzyme adsorption and activity control. Positively charged MSNs showed the highest HRP immobilization but caused significant activity loss in both enzymes. In contrast, near-neutral and negatively charged MSNs provided improved stability and activity retention for HRP and lysozyme, respectively. Except for lysozyme/hydrogel, HRP/hydrogel and enzyme-loaded nanocomposite hydrogels (HRP-loaded near-neutral and lysozyme-loaded negatively charged MSNs) were successfully 3D printed using different UV post-curing times. While enzyme-laden nanocomposite scaffolds showed promising immobilization stability, the presence of the photoinitiator caused significant inactivation for both enzymes. Irrespective of the crosslinking approach, this matrix demonstrates significant potential as a delivery carrier for various biomolecules, with promising applications in tissue engineering and wound healing.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"211 ","pages":"Article 107132"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725001319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) printed hydrogel-based scaffolds have emerged as promising for the delivery of biologicals. Recently, we developed a printable plant-based nanocomposite hydrogel, composed of anionic cellulose nanofibers (T-CNF) and methacrylated galactoglucomannan (GGMMA), reinforced with mesoporous silica nanoparticles (MSNs) of different surface charges. However, ensuring the biological activity of the delivered biomolecules requires further investigation to validate the functionality of the developed biomaterial. To investigate this, in this study, horseradish peroxidase (HRP) and lysozyme were selected as distinct model proteins, assessing their immobilization stability and biological activity after MSN immobilization and 3D printing. The interactions between the enzymes and differently surface-modified MSNs were explored using multi-parametric surface plasmon resonance (MP-SPR) and molecular dynamics (MD) simulations. We observed that MSN surface charge is key to the extent of enzyme adsorption and activity control. Positively charged MSNs showed the highest HRP immobilization but caused significant activity loss in both enzymes. In contrast, near-neutral and negatively charged MSNs provided improved stability and activity retention for HRP and lysozyme, respectively. Except for lysozyme/hydrogel, HRP/hydrogel and enzyme-loaded nanocomposite hydrogels (HRP-loaded near-neutral and lysozyme-loaded negatively charged MSNs) were successfully 3D printed using different UV post-curing times. While enzyme-laden nanocomposite scaffolds showed promising immobilization stability, the presence of the photoinitiator caused significant inactivation for both enzymes. Irrespective of the crosslinking approach, this matrix demonstrates significant potential as a delivery carrier for various biomolecules, with promising applications in tissue engineering and wound healing.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.