Caspase Domain Duplication During the Evolution of Caspase-16.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Leopold Eckhart, Attila Placido Sachslehner, Julia Steinbinder, Heinz Fischer
{"title":"Caspase Domain Duplication During the Evolution of Caspase-16.","authors":"Leopold Eckhart, Attila Placido Sachslehner, Julia Steinbinder, Heinz Fischer","doi":"10.1007/s00239-025-10252-w","DOIUrl":null,"url":null,"abstract":"<p><p>Caspases are cysteine-dependent aspartate-directed proteases which have critical functions in programmed cell death and inflammation. Their catalytic activity depends on a catalytic dyad of cysteine and histidine within a characteristic protein fold, the so-called caspase domain. Here, we investigated the evolution of caspase-16 (CASP16), an enigmatic member of the caspase family, for which only a partial human gene had been reported previously. The presence of CASP16 orthologs in placental mammals, marsupials and monotremes suggests that caspase-16 originated prior to the divergence of the main phylogenetic clades of mammals. Caspase-16 proteins of various species contain a carboxy-terminal caspase domain and an amino-terminal prodomain predicted to fold into a caspase domain-like structure, which is a unique feature among caspases known so far. Comparative sequence analysis indicates that the prodomain of caspase-16 has evolved by the duplication of exons encoding the caspase domain, whereby the catalytic site was lost in the amino-terminal domain and conserved in the carboxy-terminal domain of caspase-16. The murine and human orthologs of CASP16 contain frameshift mutations and therefore represent pseudogenes (CASP16P). CASP16 of the chimpanzee displays more than 98% nucleotide sequence identity with the human CASP16P gene but, like CASP16 genes of other primates, has an intact protein coding sequence. We conclude that caspase-16 structurally differs from other mammalian caspases, and the pseudogenization of CASP16 distinguishes humans from their phylogenetically closest relatives.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10252-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Caspases are cysteine-dependent aspartate-directed proteases which have critical functions in programmed cell death and inflammation. Their catalytic activity depends on a catalytic dyad of cysteine and histidine within a characteristic protein fold, the so-called caspase domain. Here, we investigated the evolution of caspase-16 (CASP16), an enigmatic member of the caspase family, for which only a partial human gene had been reported previously. The presence of CASP16 orthologs in placental mammals, marsupials and monotremes suggests that caspase-16 originated prior to the divergence of the main phylogenetic clades of mammals. Caspase-16 proteins of various species contain a carboxy-terminal caspase domain and an amino-terminal prodomain predicted to fold into a caspase domain-like structure, which is a unique feature among caspases known so far. Comparative sequence analysis indicates that the prodomain of caspase-16 has evolved by the duplication of exons encoding the caspase domain, whereby the catalytic site was lost in the amino-terminal domain and conserved in the carboxy-terminal domain of caspase-16. The murine and human orthologs of CASP16 contain frameshift mutations and therefore represent pseudogenes (CASP16P). CASP16 of the chimpanzee displays more than 98% nucleotide sequence identity with the human CASP16P gene but, like CASP16 genes of other primates, has an intact protein coding sequence. We conclude that caspase-16 structurally differs from other mammalian caspases, and the pseudogenization of CASP16 distinguishes humans from their phylogenetically closest relatives.

Caspase-16进化过程中的Caspase结构域复制。
半胱天冬酶是半胱氨酸依赖的天冬氨酸导向蛋白酶,在程序性细胞死亡和炎症中具有关键功能。它们的催化活性取决于半胱氨酸和组氨酸在一个特征蛋白折叠中的催化二联体,即所谓的半胱天冬酶结构域。在这里,我们研究了caspase-16 (CASP16)的进化,CASP16是caspase家族的一个神秘成员,以前只有部分人类基因被报道过。胎盘哺乳动物、有袋动物和单目动物中CASP16同源基因的存在表明,CASP16起源于哺乳动物主要系统发育分支的分化之前。不同物种的caspase -16蛋白含有羧基末端caspase结构域和预测折叠成caspase结构域样结构的氨基末端前结构域,这是目前已知的caspase中独特的特征。对比序列分析表明,caspase-16的原结构域是通过编码caspase结构域的外显子的重复进化而来的,催化位点在caspase-16的氨基末端结构域丢失,在羧基末端结构域保存。小鼠和人类的CASP16同源基因包含移码突变,因此代表假基因(CASP16P)。黑猩猩的CASP16与人类CASP16P基因的核苷酸序列有98%以上的一致性,但与其他灵长类动物的CASP16基因一样,其蛋白质编码序列是完整的。我们得出结论,CASP16在结构上不同于其他哺乳动物的CASP16酶,CASP16的假原化将人类与其在系统发育上最接近的亲戚区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信