Jia-Huan Li, Chang Liu, Si-Yu Qiu, Shi-Mei Zheng, Ying-Zi He
{"title":"Epigenetic Modifications in Sensorineural Hearing Loss: Protective Mechanisms and Therapeutic Potential.","authors":"Jia-Huan Li, Chang Liu, Si-Yu Qiu, Shi-Mei Zheng, Ying-Zi He","doi":"10.1007/s11596-025-00049-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing loss, which currently affects more than 430 million individuals globally and is projected to exceed 700 million by 2050, predominantly manifests as sensorineural hearing loss (SNHL), for which existing technologies such as hearing aids and cochlear implants fail to restore natural auditory function. Research focusing on protecting inner ear hair cells (HCs) from harmful factors through the regulation of epigenetic modifications has gained significant attention in otology for its role in regulating gene expression without altering the DNA sequence, suggesting potential strategies for preventing and treating SNHL. By synthesizing relevant studies on the inner ear, this review summarizes the emerging roles of histone modifications, DNA methylation, and noncoding RNAs in HC damage, with a focus on their therapeutic potential through epigenetic modulation. Moreover, this review examines the therapeutic potential of epigenetic regulation for the prevention and treatment of SNHL, emphasizing the application of small-molecule epigenetic compounds and their efficacy in modulating gene expression to preserve and restore auditory function.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-025-00049-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hearing loss, which currently affects more than 430 million individuals globally and is projected to exceed 700 million by 2050, predominantly manifests as sensorineural hearing loss (SNHL), for which existing technologies such as hearing aids and cochlear implants fail to restore natural auditory function. Research focusing on protecting inner ear hair cells (HCs) from harmful factors through the regulation of epigenetic modifications has gained significant attention in otology for its role in regulating gene expression without altering the DNA sequence, suggesting potential strategies for preventing and treating SNHL. By synthesizing relevant studies on the inner ear, this review summarizes the emerging roles of histone modifications, DNA methylation, and noncoding RNAs in HC damage, with a focus on their therapeutic potential through epigenetic modulation. Moreover, this review examines the therapeutic potential of epigenetic regulation for the prevention and treatment of SNHL, emphasizing the application of small-molecule epigenetic compounds and their efficacy in modulating gene expression to preserve and restore auditory function.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.