{"title":"Comparative metabolomics of acetylcholinesterase and α-glucosidase inhibitors in pericarp of Garcinia mangostana L.","authors":"Yun-Han Wang, Ta-Wei Liu, Sui-Wen Hsiao, Man-Hsiu Chu, Tzong-Huei Lee, Su-Jung Hsu, Shih Yin Chen, Ching-Kuo Lee","doi":"10.1186/s40529-025-00460-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mangosteen (Garcinia mangostana L.) pericarp extract has demonstrated potential against Alzheimer's disease (AD) and diabetes mellitus (DM). This study introduces a rapid dereplication and comparative approach to identify and characterize acetylcholinesterase (AChE) and α-glucosidase inhibitors in mangosteen pericarp. Using protein-subtraction, MS profiling, and computational modeling is effective for screening, identifying, and analyzing enzyme-inhibiting compounds from plant sources, and quantitative analysis of the main components has been performed.</p><p><strong>Results: </strong>The Mangosteen pericarp extract observed significant inhibitory activity against α-glucosidase and AChE, with IC50 values of 31.02 and 70.56 µg/mL, respectively. By comparing profiles of protein-subtracted extracts with non-treated extracts, eight potential inhibitors for each enzyme were identified: 8-desoxygartanin, gartanin, 3-isomangostin, β-mangostin, 9-hydroxycalabaxanthone, γ-mangostin, α-mangostin, and garcinone E. The α-mangostin was the most abundant, comprising 39.589% of the extract. Molecular docking revealed these inhibitors target the peripheral anionic site of AChE and the active site of α-glucosidase, forming key hydrogen bonds and pi-pi stacking interactions.</p><p><strong>Conclusion: </strong>This study emphasizes mangosteen pericarp as a promising natural source of these inhibitors, with potential for use in developing nutraceuticals and pharmaceuticals. The study validated a systems biology approach by applying dereplication and comparative UPLC-ESI-MS/MS metabolomics profiling to identify target-binding molecules in both protein-treated and untreated plant extracts. Further confirmation was obtained through molecular docking predictions, mechanism analysis, and compound quantification assays.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"66 1","pages":"13"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40529-025-00460-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mangosteen (Garcinia mangostana L.) pericarp extract has demonstrated potential against Alzheimer's disease (AD) and diabetes mellitus (DM). This study introduces a rapid dereplication and comparative approach to identify and characterize acetylcholinesterase (AChE) and α-glucosidase inhibitors in mangosteen pericarp. Using protein-subtraction, MS profiling, and computational modeling is effective for screening, identifying, and analyzing enzyme-inhibiting compounds from plant sources, and quantitative analysis of the main components has been performed.
Results: The Mangosteen pericarp extract observed significant inhibitory activity against α-glucosidase and AChE, with IC50 values of 31.02 and 70.56 µg/mL, respectively. By comparing profiles of protein-subtracted extracts with non-treated extracts, eight potential inhibitors for each enzyme were identified: 8-desoxygartanin, gartanin, 3-isomangostin, β-mangostin, 9-hydroxycalabaxanthone, γ-mangostin, α-mangostin, and garcinone E. The α-mangostin was the most abundant, comprising 39.589% of the extract. Molecular docking revealed these inhibitors target the peripheral anionic site of AChE and the active site of α-glucosidase, forming key hydrogen bonds and pi-pi stacking interactions.
Conclusion: This study emphasizes mangosteen pericarp as a promising natural source of these inhibitors, with potential for use in developing nutraceuticals and pharmaceuticals. The study validated a systems biology approach by applying dereplication and comparative UPLC-ESI-MS/MS metabolomics profiling to identify target-binding molecules in both protein-treated and untreated plant extracts. Further confirmation was obtained through molecular docking predictions, mechanism analysis, and compound quantification assays.
期刊介绍:
Botanical Studies is an open access journal that encompasses all aspects of botany, including but not limited to taxonomy, morphology, development, genetics, evolution, reproduction, systematics, and biodiversity of all plant groups, algae, and fungi. The journal is affiliated with the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan.