{"title":"Inference of Pairwise Interactions from Strain Frequency Data Across Settings and Context-Dependent Mutual Invasibilities.","authors":"Thi Minh Thao Le, Sten Madec, Erida Gjini","doi":"10.1007/s11538-025-01450-0","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a method to estimate pairwise strain interactions from population-level frequencies across different endemic settings. We apply the framework of replicator dynamics, derived from a multi-strain SIS model with co-colonization, to extract from 5 datasets the fundamental backbone of strain interactions. In our replicator, each pairwise invasion fitness explicitly arises from local environmental context and trait variations between strains. We adopt the simplest formulation for multi-strain coexistence, where context is encoded in basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> and mean global susceptibility to co-colonization k, and trait variations <math><msub><mi>α</mi> <mrow><mi>ij</mi></mrow> </msub> </math> capture pairwise deviations from k. We integrate Streptococcus pneumoniae serotype frequencies and serotype identities collected from 5 environments: epidemiological surveys in Denmark, Nepal, Iran, Brazil and Mozambique, and mechanistically link their distributions. Our results have twofold implications. First, we offer a new proof-of-concept in the inference of multi-species interactions based on cross-sectional data. We also discuss 2 key aspects of the method: the site ordering for sequential fitting, and stability constraints on the dynamics. Secondly, we effectively estimate at high-resolution more than 70% of the <math><mrow><mn>92</mn> <mo>×</mo> <mn>92</mn></mrow> </math> pneumococcus serotype interaction matrix in co-colonization, allowing for further projections and hypotheses testing. We show that, in these bacteria, both within- and between- serotype interaction coefficients' distribution emerge to be unimodal, their difference in mean broadly reflecting stability assumptions on serotype coexistence. This framework enables further model calibration to global data: cross-sectional across sites, or longitudinal in one site over time, - and should allow a more robust and integrated investigation of intervention effects in such biodiverse ecosystems.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 6","pages":"82"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01450-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a method to estimate pairwise strain interactions from population-level frequencies across different endemic settings. We apply the framework of replicator dynamics, derived from a multi-strain SIS model with co-colonization, to extract from 5 datasets the fundamental backbone of strain interactions. In our replicator, each pairwise invasion fitness explicitly arises from local environmental context and trait variations between strains. We adopt the simplest formulation for multi-strain coexistence, where context is encoded in basic reproduction number and mean global susceptibility to co-colonization k, and trait variations capture pairwise deviations from k. We integrate Streptococcus pneumoniae serotype frequencies and serotype identities collected from 5 environments: epidemiological surveys in Denmark, Nepal, Iran, Brazil and Mozambique, and mechanistically link their distributions. Our results have twofold implications. First, we offer a new proof-of-concept in the inference of multi-species interactions based on cross-sectional data. We also discuss 2 key aspects of the method: the site ordering for sequential fitting, and stability constraints on the dynamics. Secondly, we effectively estimate at high-resolution more than 70% of the pneumococcus serotype interaction matrix in co-colonization, allowing for further projections and hypotheses testing. We show that, in these bacteria, both within- and between- serotype interaction coefficients' distribution emerge to be unimodal, their difference in mean broadly reflecting stability assumptions on serotype coexistence. This framework enables further model calibration to global data: cross-sectional across sites, or longitudinal in one site over time, - and should allow a more robust and integrated investigation of intervention effects in such biodiverse ecosystems.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.