Wei Li, Weijie Fan, Si Zhang, Haiyu Zhang, Dong Zhang, Li Wen
{"title":"Aberrant cerebral activity in patients with unruptured intracranial aneurysm: a resting-state functional MRI study.","authors":"Wei Li, Weijie Fan, Si Zhang, Haiyu Zhang, Dong Zhang, Li Wen","doi":"10.1007/s00429-025-02934-4","DOIUrl":null,"url":null,"abstract":"<p><p>Patients carrying unruptured intracranial aneurysm (UIA) often experience emotional alterations and cognitive impairments. While the specific mechanisms underlying these impairments are still not fully understood. The study measured the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) to investigate the abnormal brain functional alterations in 49 UIA patients compared with 50 healthy controls, and also analyzed the correlations among neuroimaging indices, the clinical data, and the neuropsychological test results. UIA patients exhibited more active brain region activity in the right hippocampus than the healthy group and showed negatively activated brain regions, including the cuneus, left paracentral lobule, and right postcentral gyrus. Furthermore, the strength of FC decreased in the bilateral middle cingulate gyrus; right superior temporal gyrus and insula; and left parahippocampal gyrus, fusiform gyrus, lingual gyrus, inferior frontal gyrus, and middle frontal gyrus. The abnormal activities in the aforementioned brain regions were closely linked to worse performance in emotion and cognition. The study presents a potential neuroimaging-based mechanism of brain function that could explain the emotional alterations and cognitive impairments in UIA patients.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 5","pages":"68"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02934-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients carrying unruptured intracranial aneurysm (UIA) often experience emotional alterations and cognitive impairments. While the specific mechanisms underlying these impairments are still not fully understood. The study measured the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) to investigate the abnormal brain functional alterations in 49 UIA patients compared with 50 healthy controls, and also analyzed the correlations among neuroimaging indices, the clinical data, and the neuropsychological test results. UIA patients exhibited more active brain region activity in the right hippocampus than the healthy group and showed negatively activated brain regions, including the cuneus, left paracentral lobule, and right postcentral gyrus. Furthermore, the strength of FC decreased in the bilateral middle cingulate gyrus; right superior temporal gyrus and insula; and left parahippocampal gyrus, fusiform gyrus, lingual gyrus, inferior frontal gyrus, and middle frontal gyrus. The abnormal activities in the aforementioned brain regions were closely linked to worse performance in emotion and cognition. The study presents a potential neuroimaging-based mechanism of brain function that could explain the emotional alterations and cognitive impairments in UIA patients.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.