{"title":"Chromatographic fingerprinting and antibiofilm effect of Ziziphus jujuba fraction on Pseudomonas aeruginosa.","authors":"Mohamed Turkey, Jilan A Nazeam","doi":"10.1186/s13568-025-01886-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudomonas aeruginosa represents a critical global health threat, particularly affecting immunocompromised individuals, as well as patients with wounds and burn injuries. The increasing prevalence of multidrug-resistant (MDR) P. aeruginosa strains has significantly reduced the efficacy of conventional antimicrobial therapies, underscoring the urgent need for new, effective therapeutic alternatives. Plant-derived secondary metabolites have emerged as promising candidates due to their diverse bioactivities and favorable safety profiles. This study investigated the antimicrobial and anti-virulence potential of purified aqueous fractions of Ziziphus jujuba (ZJ) seeds against MDR P. aeruginosa clinical isolates. LC-ESI-MS/MS-MRM fingerprinting identified 33 compounds, including five predominant phenolics: 3,4-dihydroxybenzoic acid, gallic acid, syringic acid, chlorogenic acid, and ferulic acid. One hundred clinical isolates were evaluated for antibiotic sensitivity and biofilm-forming ability. The ZJ fraction exhibited potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 1.56 mg/ml and significantly inhibited biofilm formation by approximately 70%. Additionally, quantitative real-time PCR showed a marked downregulation the key quorum-sensing genes lasI (45%), rhlI (42%), and rhlR (34%) (p ≤ 0.05). These findings reveal, for the first time, that the aqueous fraction of Z. jujuba seeds not only inhibits bacterial proliferation, but also attenuates biofilm formation and virulence gene expression in MDR-P. aeruginosa. These results highlight the potential of ZJ fraction as a promising plant-based antimicrobial agent. Further in vivo investigations and mechanistic studies are warranted to validate its clinical applicability and therapeutic efficacy.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"79"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01886-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas aeruginosa represents a critical global health threat, particularly affecting immunocompromised individuals, as well as patients with wounds and burn injuries. The increasing prevalence of multidrug-resistant (MDR) P. aeruginosa strains has significantly reduced the efficacy of conventional antimicrobial therapies, underscoring the urgent need for new, effective therapeutic alternatives. Plant-derived secondary metabolites have emerged as promising candidates due to their diverse bioactivities and favorable safety profiles. This study investigated the antimicrobial and anti-virulence potential of purified aqueous fractions of Ziziphus jujuba (ZJ) seeds against MDR P. aeruginosa clinical isolates. LC-ESI-MS/MS-MRM fingerprinting identified 33 compounds, including five predominant phenolics: 3,4-dihydroxybenzoic acid, gallic acid, syringic acid, chlorogenic acid, and ferulic acid. One hundred clinical isolates were evaluated for antibiotic sensitivity and biofilm-forming ability. The ZJ fraction exhibited potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 1.56 mg/ml and significantly inhibited biofilm formation by approximately 70%. Additionally, quantitative real-time PCR showed a marked downregulation the key quorum-sensing genes lasI (45%), rhlI (42%), and rhlR (34%) (p ≤ 0.05). These findings reveal, for the first time, that the aqueous fraction of Z. jujuba seeds not only inhibits bacterial proliferation, but also attenuates biofilm formation and virulence gene expression in MDR-P. aeruginosa. These results highlight the potential of ZJ fraction as a promising plant-based antimicrobial agent. Further in vivo investigations and mechanistic studies are warranted to validate its clinical applicability and therapeutic efficacy.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.