{"title":"Investigate the Effect of ZFP64 on mRNA Expression of HBG Based on Bioinformatics and Experimental Validation.","authors":"Siqi Huang, Jianfeng Wu, Yinghong Yang, Mingming Zhu, Lihao Chen, Shunhan Zhang, Yi Yang, Xiaofang Sun, Yingjun Xie","doi":"10.1007/s12013-025-01776-5","DOIUrl":null,"url":null,"abstract":"<p><p>γ-globin genes (HBG1 and HBG2) are usually expressed during fetal life, and almost no expression after birth. Therefore, the reactivation of HBG is a key target for the treatment of hemoglobinopathy. ZFP64 is a C2H2 type zinc finger transcription factor, which has been shown to play an important role in the maintenance of gene expression in mixed lineage leukemia, and other C2H2 type zinc finger transcription factors (such as ZFP410 and ZFP644) have been shown to regulate the expression of fetal hemoglobin (HbF) in thalassemia. This study aims to investigate the effect of ZFP64 on mRNA expression of HBG. We performed bioinformatics analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks to identify genes and transcription factors associated with ZFP64. ZFP64 was knocked out in K562 and HUDEP-2 cell lines by CRISPR-Cas9 electroporation, and the transcription levels of ZFP64, HBB and HBG were analyzed. In undifferentiated and 7-day differentiated HUDEP-2 cells, knocking down ZFP64 resulted in a 1.5-fold and 2.5-fold increase in HBG mRNA expression, respectively (p < 0.05). These findings suggest that ZFP64 is a potential regulator of HBG expression and warrants further investigation as a therapeutic target in hemoglobinopathies.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01776-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
γ-globin genes (HBG1 and HBG2) are usually expressed during fetal life, and almost no expression after birth. Therefore, the reactivation of HBG is a key target for the treatment of hemoglobinopathy. ZFP64 is a C2H2 type zinc finger transcription factor, which has been shown to play an important role in the maintenance of gene expression in mixed lineage leukemia, and other C2H2 type zinc finger transcription factors (such as ZFP410 and ZFP644) have been shown to regulate the expression of fetal hemoglobin (HbF) in thalassemia. This study aims to investigate the effect of ZFP64 on mRNA expression of HBG. We performed bioinformatics analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks to identify genes and transcription factors associated with ZFP64. ZFP64 was knocked out in K562 and HUDEP-2 cell lines by CRISPR-Cas9 electroporation, and the transcription levels of ZFP64, HBB and HBG were analyzed. In undifferentiated and 7-day differentiated HUDEP-2 cells, knocking down ZFP64 resulted in a 1.5-fold and 2.5-fold increase in HBG mRNA expression, respectively (p < 0.05). These findings suggest that ZFP64 is a potential regulator of HBG expression and warrants further investigation as a therapeutic target in hemoglobinopathies.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.