Lorenzo Chiaverini, Riccardo Di Leo, Luca Famlonga, Matteo Pacini, Emma Baglini, Elisabetta Barresi, Massimiliano F Peana, Iogann Tolbatov, Alessandro Marrone, Diego La Mendola, Jürgen Gailer, Tiziano Marzo
{"title":"The metal(loid)s' dilemma. What's the next step for a new era of inorganic molecules in medicine?","authors":"Lorenzo Chiaverini, Riccardo Di Leo, Luca Famlonga, Matteo Pacini, Emma Baglini, Elisabetta Barresi, Massimiliano F Peana, Iogann Tolbatov, Alessandro Marrone, Diego La Mendola, Jürgen Gailer, Tiziano Marzo","doi":"10.1093/mtomcs/mfaf013","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we critically examine the key challenges associated with the development of inorganic drugs, a field that remains underrepresented despite its significant therapeutic potential. Currently, most clinically approved pharmaceuticals are organic compounds, a trend driven by multiple interconnected factors that have historically limited the adoption and regulatory approval of metal(loid)-based entities. These challenges include issues related to stability, selectivity, pharmacokinetics, and potential toxicity, which require systematic investigation and innovative solutions. Nevertheless, the profound clinical impact of approved inorganic drugs-particularly transition metal(loid)-based agents for both therapeutic and diagnostic applications-is well-established. The success of these compounds underscores the need for expanded research efforts and optimized clinical protocols to fully harness the advantages of metal-based pharmaceuticals. In this context, we explore emerging strategies to overcome current limitations and accelerate the development of next-generation inorganic drugs. These include the rational design of metal-based therapeutics, the integration of advanced metallomics and metalloproteomics, and the application of AI-driven predictive modeling to improve drug selectivity, bioavailability, and safety. By overcoming these challenges through an interdisciplinary approach, metal-based medicine will advance significantly, expanding its impact across a wide range of therapeutic applications.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfaf013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we critically examine the key challenges associated with the development of inorganic drugs, a field that remains underrepresented despite its significant therapeutic potential. Currently, most clinically approved pharmaceuticals are organic compounds, a trend driven by multiple interconnected factors that have historically limited the adoption and regulatory approval of metal(loid)-based entities. These challenges include issues related to stability, selectivity, pharmacokinetics, and potential toxicity, which require systematic investigation and innovative solutions. Nevertheless, the profound clinical impact of approved inorganic drugs-particularly transition metal(loid)-based agents for both therapeutic and diagnostic applications-is well-established. The success of these compounds underscores the need for expanded research efforts and optimized clinical protocols to fully harness the advantages of metal-based pharmaceuticals. In this context, we explore emerging strategies to overcome current limitations and accelerate the development of next-generation inorganic drugs. These include the rational design of metal-based therapeutics, the integration of advanced metallomics and metalloproteomics, and the application of AI-driven predictive modeling to improve drug selectivity, bioavailability, and safety. By overcoming these challenges through an interdisciplinary approach, metal-based medicine will advance significantly, expanding its impact across a wide range of therapeutic applications.