Heterointerface-Modulated Synthetic Synapses Exhibiting Complex Multiscale Plasticity.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xingji Liu, Yao Ni, Zujun Wang, Sunfu Wei, Xiao En Chen, Jingjie Lin, Lu Liu, Boyang Yu, Yue Yu, Dengyun Lei, Yayi Chen, Jianfeng Zhang, Jing Qi, Wei Zhong, Yuan Liu
{"title":"Heterointerface-Modulated Synthetic Synapses Exhibiting Complex Multiscale Plasticity.","authors":"Xingji Liu, Yao Ni, Zujun Wang, Sunfu Wei, Xiao En Chen, Jingjie Lin, Lu Liu, Boyang Yu, Yue Yu, Dengyun Lei, Yayi Chen, Jianfeng Zhang, Jing Qi, Wei Zhong, Yuan Liu","doi":"10.1002/advs.202417237","DOIUrl":null,"url":null,"abstract":"<p><p>An asymmetric dual-gate heterointerface-regulated artificial synapse (HRAS) is developed, utilizing a main gate with distinct ion concentrations and a lateral gate to receive synaptic pulses, and through dielectric coupling and ionic effects, formed indium tin zinc oxide (ITZO) dual-interface channels that allow precise control over channel charge, thereby simulating multi-level coordinated actions of dual-neurotransmitters. The lateral modulation of the lateral gate significantly regulates ionic effects, achieving the intricate interplay among lateral inhibition/enhancement and short-/long-term plasticity at a multi-level scale for the first time. This interplay enables the HRAS device to simulate frequency-dependent image filtering and spike number-dependent dynamic visual persistence. By combining temporal synaptic inputs with lateral modulation, HRAS harnesses spatiotemporal properties for bio-inspired cryptographic applications, offering a versatile device-level platform for secure information processing. Furthermore, a novel dual-gate input neural network architecture based on HRAS has been proposed, which aids in weight update and demonstrates enhanced recognition capabilities in neural network tasks, highlighting its role in bio-inspired computing.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e17237"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202417237","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An asymmetric dual-gate heterointerface-regulated artificial synapse (HRAS) is developed, utilizing a main gate with distinct ion concentrations and a lateral gate to receive synaptic pulses, and through dielectric coupling and ionic effects, formed indium tin zinc oxide (ITZO) dual-interface channels that allow precise control over channel charge, thereby simulating multi-level coordinated actions of dual-neurotransmitters. The lateral modulation of the lateral gate significantly regulates ionic effects, achieving the intricate interplay among lateral inhibition/enhancement and short-/long-term plasticity at a multi-level scale for the first time. This interplay enables the HRAS device to simulate frequency-dependent image filtering and spike number-dependent dynamic visual persistence. By combining temporal synaptic inputs with lateral modulation, HRAS harnesses spatiotemporal properties for bio-inspired cryptographic applications, offering a versatile device-level platform for secure information processing. Furthermore, a novel dual-gate input neural network architecture based on HRAS has been proposed, which aids in weight update and demonstrates enhanced recognition capabilities in neural network tasks, highlighting its role in bio-inspired computing.

异界面调制合成突触显示复杂的多尺度可塑性。
研制了一种非对称双栅异界面调节人工突触(HRAS),利用具有不同离子浓度的主栅和侧栅接收突触脉冲,通过介电耦合和离子效应,形成铟锡锌氧化物(ITZO)双界面通道,可以精确控制通道电荷,从而模拟双神经递质的多级协调作用。侧栅的侧向调制显著调控离子效应,首次在多层次尺度上实现了侧栅抑制/增强与短/长塑性之间复杂的相互作用。这种相互作用使HRAS设备能够模拟与频率相关的图像滤波和与尖峰数相关的动态视觉持久性。通过将时间突触输入与横向调制相结合,HRAS利用了生物启发密码应用的时空特性,为安全信息处理提供了一个通用的设备级平台。此外,本文还提出了一种基于HRAS的新型双栅输入神经网络架构,该架构有助于权重更新,并增强了神经网络任务的识别能力,突出了其在生物启发计算中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信