Mayara de Mattos Lacerda de Carvalho, Talyta Soares do Nascimento, Gustavo Miranda Rocha, Livia Carvalho Barbosa, Paulo Mascarello Bisch, Cedric Delporte, Pierre van Antwerpen, Jean-Marie Ruysschaert, Paulo Ricardo Batista, Leticia Miranda Santos Lery
{"title":"Dual Role for Pld1 in <i>Klebsiella pneumoniae</i> Virulence: Transcriptomics and Proteomics Provide Insights into Direct and Indirect Effects.","authors":"Mayara de Mattos Lacerda de Carvalho, Talyta Soares do Nascimento, Gustavo Miranda Rocha, Livia Carvalho Barbosa, Paulo Mascarello Bisch, Cedric Delporte, Pierre van Antwerpen, Jean-Marie Ruysschaert, Paulo Ricardo Batista, Leticia Miranda Santos Lery","doi":"10.1021/acs.jproteome.4c01146","DOIUrl":null,"url":null,"abstract":"<p><p><i>Klebsiella pneumoniae</i> is an opportunistic pathogen frequently found in healthcare settings, exhibiting resistance to carbapenems and third-generation cephalosporins. Hypervirulent community-acquired strains are also emerging. According to the World Health Organization (WHO), it is the top priority for developing new treatment strategies. A putative phospholipase D (PLD1) was linked to <i>K. pneumoniae</i> virulence, as a mutant strain is avirulent in a mouse model. However, the PLD1 function remains unclear. In the current study, no interaction between PLD1 and lipids was detected in a fat-blot. Lipidomic profile was not altered between strains or infected cells. To shed light on the role of PLD1, we compared the gene expression profile of a wild-type x <i>pld1</i> mutant and found 330 modulated genes. Noteworthy, capsular polysaccharide genes were increased in the wild-type, while the mutant expressed higher levels of fimbriae, conjugation systems, and stress-protection proteins. Electron microscopy confirmed a loose capsule in the mutant, which also showed an enhanced adhesion to epithelial cells. A pulldown experiment using PLD1 as bait identified 48 macrophage proteins as putative ligands, including ribosomal, RNA-related, small GTPases, and cytoskeleton-related proteins. It suggests that PLD1 may modulate host cell complexes, favoring the infection. These findings provide novel clues about PLD1's role in virulence, guiding further investigations.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c01146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently found in healthcare settings, exhibiting resistance to carbapenems and third-generation cephalosporins. Hypervirulent community-acquired strains are also emerging. According to the World Health Organization (WHO), it is the top priority for developing new treatment strategies. A putative phospholipase D (PLD1) was linked to K. pneumoniae virulence, as a mutant strain is avirulent in a mouse model. However, the PLD1 function remains unclear. In the current study, no interaction between PLD1 and lipids was detected in a fat-blot. Lipidomic profile was not altered between strains or infected cells. To shed light on the role of PLD1, we compared the gene expression profile of a wild-type x pld1 mutant and found 330 modulated genes. Noteworthy, capsular polysaccharide genes were increased in the wild-type, while the mutant expressed higher levels of fimbriae, conjugation systems, and stress-protection proteins. Electron microscopy confirmed a loose capsule in the mutant, which also showed an enhanced adhesion to epithelial cells. A pulldown experiment using PLD1 as bait identified 48 macrophage proteins as putative ligands, including ribosomal, RNA-related, small GTPases, and cytoskeleton-related proteins. It suggests that PLD1 may modulate host cell complexes, favoring the infection. These findings provide novel clues about PLD1's role in virulence, guiding further investigations.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".