Jennifer Fritz , Anna-Christina Moser , Alexander Otahal , Karina Kramer , Salih Casurovic , Andreas H. Teuschl-Woller , Stefan Nehrer
{"title":"Hydrostatic Pressure Enhances Chondrogenic Differentiation of Mesenchymal Stem Cells in Silk Fibroin-Based 3D Bioprinted Hydrogels","authors":"Jennifer Fritz , Anna-Christina Moser , Alexander Otahal , Karina Kramer , Salih Casurovic , Andreas H. Teuschl-Woller , Stefan Nehrer","doi":"10.1021/acs.biomac.5c00048","DOIUrl":null,"url":null,"abstract":"<div><div>The human meniscus experiences mechanical forces and converts axial loads into hoop stresses. Meniscus injuries and meniscectomies can compromise this function, and therefore, meniscus implants are required. To assess their performance <em>in vitro</em>, it is crucial to recreate a physiological environment. Therefore, we investigated the effect of TGFβ-3-supplemented and TGFβ-free cyclic hydrostatic pressure (HP) up to 10 MPa on 3D bioprinted silk fibroin (SF) polymer-based hydrogels. The bioink was seeded with human infrapatellar fat pad-derived MSCs and supplemented with an extracellular matrix and gelatin. We found that HP stimulation did not alter cell-free biomaterial maturation, while it partially stimulated metabolic activity and cell proliferation. Remarkably, TGFβ-3-supplemented HP led to the highest expression levels of chondrogenic markers, followed by TGFβ-3-supplemented unloaded incubation and then TGFβ-free HP. Despite the low cell density, the combined exposure to TGFβ-3 and HP also facilitated localized glycosaminoglycan and collagen deposition, demonstrating promising prospects for future meniscus regeneration.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (48KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3432-3445"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002363","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human meniscus experiences mechanical forces and converts axial loads into hoop stresses. Meniscus injuries and meniscectomies can compromise this function, and therefore, meniscus implants are required. To assess their performance in vitro, it is crucial to recreate a physiological environment. Therefore, we investigated the effect of TGFβ-3-supplemented and TGFβ-free cyclic hydrostatic pressure (HP) up to 10 MPa on 3D bioprinted silk fibroin (SF) polymer-based hydrogels. The bioink was seeded with human infrapatellar fat pad-derived MSCs and supplemented with an extracellular matrix and gelatin. We found that HP stimulation did not alter cell-free biomaterial maturation, while it partially stimulated metabolic activity and cell proliferation. Remarkably, TGFβ-3-supplemented HP led to the highest expression levels of chondrogenic markers, followed by TGFβ-3-supplemented unloaded incubation and then TGFβ-free HP. Despite the low cell density, the combined exposure to TGFβ-3 and HP also facilitated localized glycosaminoglycan and collagen deposition, demonstrating promising prospects for future meniscus regeneration.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.