Mingzhi Yu, Dongsheng Liu, Pranay Shah, Bei Qiu, Allen Mathew, Liang Yao, Tianyu Guan, Hengji Cong, Nan Zhang
{"title":"Optimizing Microfluidic Channel Design with Tilted Rectangular Baffles for Enhanced mRNA-Lipid Nanoparticle Preparation.","authors":"Mingzhi Yu, Dongsheng Liu, Pranay Shah, Bei Qiu, Allen Mathew, Liang Yao, Tianyu Guan, Hengji Cong, Nan Zhang","doi":"10.1021/acsbiomaterials.4c02373","DOIUrl":null,"url":null,"abstract":"<p><p>RNA therapeutics represent a pivotal advancement in contemporary medicine, pioneering innovative treatments in oncology and vaccine production. The inherent instability of RNA and its delivery challenges necessitate the use of lipid-based nanoparticles as crucial transport vehicles. This research focuses on the design, simulation, and optimization of various microfluidic channel configurations for fabricating poly(dimethylsiloxane) (PDMS) microfluidic chips, aimed at producing lipid nanoparticles (LNPs) encapsulating green fluorescent protein mRNA (GFP mRNA). Aiming for high mixing efficiency and acceptable pressure drop suitable for scale-up, we designed and improved multiple microfluidic channels featuring flow focusing and diverse tilted rectangular baffle structures via computational fluid dynamics (CFD). Simulation results indicated that baffle angles ranging from 70 to 90° exhibited similar mixing efficiencies at different total flow rates, with pressure drops increasing alongside the baffle angle. Additionally, increasing the baffle length at a fixed angle of 70° not only improved mixing efficiency but also increased the pressure drop. To validate these findings, PDMS microfluidic chips were fabricated for all designs to prepare empty LNPs. The baffle structure with a 70° angle and 150 μm length was identified as the best configuration based on both simulation and experimental results. This optimal design was then used to prepare LNPs with varying GFP mRNA concentrations, demonstrating that an N/P ratio of 5.6 yielded the highest transfection efficiency from <i>in vitro</i> experiments. This work not only advances the production of lipid-based nanoparticles through microfluidics but also provides a scalable and reproducible method that can potentially enhance the clinical translation of RNA therapeutics.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02373","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
RNA therapeutics represent a pivotal advancement in contemporary medicine, pioneering innovative treatments in oncology and vaccine production. The inherent instability of RNA and its delivery challenges necessitate the use of lipid-based nanoparticles as crucial transport vehicles. This research focuses on the design, simulation, and optimization of various microfluidic channel configurations for fabricating poly(dimethylsiloxane) (PDMS) microfluidic chips, aimed at producing lipid nanoparticles (LNPs) encapsulating green fluorescent protein mRNA (GFP mRNA). Aiming for high mixing efficiency and acceptable pressure drop suitable for scale-up, we designed and improved multiple microfluidic channels featuring flow focusing and diverse tilted rectangular baffle structures via computational fluid dynamics (CFD). Simulation results indicated that baffle angles ranging from 70 to 90° exhibited similar mixing efficiencies at different total flow rates, with pressure drops increasing alongside the baffle angle. Additionally, increasing the baffle length at a fixed angle of 70° not only improved mixing efficiency but also increased the pressure drop. To validate these findings, PDMS microfluidic chips were fabricated for all designs to prepare empty LNPs. The baffle structure with a 70° angle and 150 μm length was identified as the best configuration based on both simulation and experimental results. This optimal design was then used to prepare LNPs with varying GFP mRNA concentrations, demonstrating that an N/P ratio of 5.6 yielded the highest transfection efficiency from in vitro experiments. This work not only advances the production of lipid-based nanoparticles through microfluidics but also provides a scalable and reproducible method that can potentially enhance the clinical translation of RNA therapeutics.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture