{"title":"Hesperidin Derivatives Contained Hydrogel Dressing for Photothermal Treatment of Melanoma and Postoperative Tissue Regeneration.","authors":"Jiaqian He, Zheng Zhou, Wenxiang Zhu, Xin Chen, Shuai Zhu, Jingjing Sun, You Zuo, Mengni Yang, Mengyi Yu, Lingxiu Yang, Jiajie Lei, Wenjia Shao, Xiaoli He, Hairong Liu","doi":"10.1021/acsabm.5c00633","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is a severe malignant skin tumor. It is crucial to effectively eliminate melanoma and promote rapid and healthy regeneration of postoperative tissue defects. Herein, hesperidin derivatives (HD) have been developed as the bioactive components of hydrogels that are capable of ablating melanoma via photothermal therapy (PTT) and promoting tissue regeneration. HD have been prepared by heating hesperidin alkaline solution followed by dialysis and lyophilization, and GelMA hydrogels encapsulating HD kill cancer cells and bacteria under near-infrared (NIR) irradiation. The in vitro test and in vivo transcriptomic analysis confirmed that the HD containing GelMA hydrogels induce the immunogenic cell death (ICD) effect of tumor cells by significantly upregulating chemokine-related, cytokine-related, and apoptosis-related genes, thereby enhancing therapeutic efficacy. In a mouse model of infected skin wounds, the HD containing hydrogels under 808 nm light irradiation effectively promoted wound repair. This was achieved through accelerated wound closure and enhanced skin regeneration, mediated by increased angiogenesis and collagen deposition. In conclusion, the HD containing hydrogels provide a new strategy for the clinical treatment of melanoma and postoperative tissue defect repair following operative resection of cancer.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Melanoma is a severe malignant skin tumor. It is crucial to effectively eliminate melanoma and promote rapid and healthy regeneration of postoperative tissue defects. Herein, hesperidin derivatives (HD) have been developed as the bioactive components of hydrogels that are capable of ablating melanoma via photothermal therapy (PTT) and promoting tissue regeneration. HD have been prepared by heating hesperidin alkaline solution followed by dialysis and lyophilization, and GelMA hydrogels encapsulating HD kill cancer cells and bacteria under near-infrared (NIR) irradiation. The in vitro test and in vivo transcriptomic analysis confirmed that the HD containing GelMA hydrogels induce the immunogenic cell death (ICD) effect of tumor cells by significantly upregulating chemokine-related, cytokine-related, and apoptosis-related genes, thereby enhancing therapeutic efficacy. In a mouse model of infected skin wounds, the HD containing hydrogels under 808 nm light irradiation effectively promoted wound repair. This was achieved through accelerated wound closure and enhanced skin regeneration, mediated by increased angiogenesis and collagen deposition. In conclusion, the HD containing hydrogels provide a new strategy for the clinical treatment of melanoma and postoperative tissue defect repair following operative resection of cancer.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.