Construction of Zinc Oxide/Nickel Ferric-Layered Double Hydroxide Composite for Efficient Adsorption of Erythromycin: Kinetic and Thermodynamic Investigation
Asaad F. Hassan, Attalla F. El-kott, Mohammed A. AlShehri, Fahad M. Aldosari
{"title":"Construction of Zinc Oxide/Nickel Ferric-Layered Double Hydroxide Composite for Efficient Adsorption of Erythromycin: Kinetic and Thermodynamic Investigation","authors":"Asaad F. Hassan, Attalla F. El-kott, Mohammed A. AlShehri, Fahad M. Aldosari","doi":"10.1007/s11270-025-08156-y","DOIUrl":null,"url":null,"abstract":"<div><p>Erythromycin, a persistent antibiotic pollutant, poses challenges for wastewater treatment due to its stability and resistance to biodegradation. The current paper was designed to synthesize three solid adsorbents: nickel ferric-layered double hydroxide (NF), zinc oxide nanoparticles (Z), and zinc oxide/nickel ferric-layered double hydroxide composite (ZNF) for the effective removal of erythromycin (Ery). The features of the fabricated solid materials were fully investigated by employing X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), and textural characterization via nitrogen gas adsorption/desorption studies. The obtained results presented that the prepared ZNF has a nano-size (123 nm), surface area of 157.161 m<sup>2</sup>/g with pore radius of 2.67 nm, and rich with different surface chemical function groups. The batch adsorption tests revealed that ZNF achieved the maximum adsorption capacity of 273.51 mg/g at pH 7, 15 °C, 1.7 g/L as adsorbent dosage, and after 6 h of shaking time. The application of various nonlinear isothermal and kinetic models shows good consistency with the Langmuir and pseudo-second-order models. The thermodynamic studies illustrated that the adsorption was endothermic, favorable, and spontaneous. Moreover, all the samples had better reusability and stability after ten adsorption–desorption cycles ZNF loss only 3.1% of its removal efficiency. An interesting and attractive subject of study is the unique structure of ZNF as a pollutant adsorbent with a high adsorption capacity.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-08156-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Erythromycin, a persistent antibiotic pollutant, poses challenges for wastewater treatment due to its stability and resistance to biodegradation. The current paper was designed to synthesize three solid adsorbents: nickel ferric-layered double hydroxide (NF), zinc oxide nanoparticles (Z), and zinc oxide/nickel ferric-layered double hydroxide composite (ZNF) for the effective removal of erythromycin (Ery). The features of the fabricated solid materials were fully investigated by employing X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), and textural characterization via nitrogen gas adsorption/desorption studies. The obtained results presented that the prepared ZNF has a nano-size (123 nm), surface area of 157.161 m2/g with pore radius of 2.67 nm, and rich with different surface chemical function groups. The batch adsorption tests revealed that ZNF achieved the maximum adsorption capacity of 273.51 mg/g at pH 7, 15 °C, 1.7 g/L as adsorbent dosage, and after 6 h of shaking time. The application of various nonlinear isothermal and kinetic models shows good consistency with the Langmuir and pseudo-second-order models. The thermodynamic studies illustrated that the adsorption was endothermic, favorable, and spontaneous. Moreover, all the samples had better reusability and stability after ten adsorption–desorption cycles ZNF loss only 3.1% of its removal efficiency. An interesting and attractive subject of study is the unique structure of ZNF as a pollutant adsorbent with a high adsorption capacity.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.