{"title":"Nanoindentation Study on Depth-Dependent Hardness and Embrittlement of He Ion-Irradiated Fe–9Cr Alloy","authors":"Hoe-Yeon Jeong, Seunghyun Lee, Sangbeen Lee, Dae-sik Chang, Jung Gu Lee, Eun-chae Jeon","doi":"10.1007/s12540-024-01869-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of neutron irradiation and high-temperature environments on the embrittlement and ductility of ARAA steel, a structural material for fusion reactors, using nanoindentation techniques. Neutron irradiation in fusion environments causes material brittleness, increasing the risk of cracks and compromising reactor safety. Conversely, high temperatures enhance ductility, potentially offsetting embrittlement. This research employs nanoindentation techniques to analyze embrittlement and softening, using He ion irradiation under temperature controls to simulate neutron effects, enabling faster damage assessment and providing insights into material behavior. The results demonstrate that irradiation significantly increases hardness, particularly at shallow depths, while higher temperatures generally reduce hardness across the full depth. Under combined irradiation dose and temperature conditions, He ion irradiation primarily caused embrittlement, but the softening effect from higher temperatures reduced damage depth. Embrittlement was deepest at room temperature and decreased with rising irradiation temperature, with the predicted embrittlement depth limited to 3.0 μm under combined conditions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 6","pages":"1557 - 1568"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01869-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of neutron irradiation and high-temperature environments on the embrittlement and ductility of ARAA steel, a structural material for fusion reactors, using nanoindentation techniques. Neutron irradiation in fusion environments causes material brittleness, increasing the risk of cracks and compromising reactor safety. Conversely, high temperatures enhance ductility, potentially offsetting embrittlement. This research employs nanoindentation techniques to analyze embrittlement and softening, using He ion irradiation under temperature controls to simulate neutron effects, enabling faster damage assessment and providing insights into material behavior. The results demonstrate that irradiation significantly increases hardness, particularly at shallow depths, while higher temperatures generally reduce hardness across the full depth. Under combined irradiation dose and temperature conditions, He ion irradiation primarily caused embrittlement, but the softening effect from higher temperatures reduced damage depth. Embrittlement was deepest at room temperature and decreased with rising irradiation temperature, with the predicted embrittlement depth limited to 3.0 μm under combined conditions.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.