{"title":"Thermodynamic stability from Lorentzian path integrals and codimension-two singularities","authors":"Hong Zhe Vincent Chen","doi":"10.1007/JHEP05(2025)180","DOIUrl":null,"url":null,"abstract":"<p>It has previously been shown how the gravitational thermal partition function can be obtained from a Lorentzian path integral. Unlike the Euclidean case, the integration contour over Lorentzian metrics is not immediately ruled out by the conformal factor problem. One can then ask whether this contour can be deformed to pick up nontrivial contributions from various saddle points. In Einstein-Maxwell theory, we argue that the relevance of each black hole saddle to the thermal partition function depends on its thermodynamic stability against variations in energy, angular momentum, and charge. The argument involves consideration of constrained saddles where area and quantities associated with angular momentum and charge are fixed on a codimension-two surface. Consequently, this surface possesses not only a conical singularity, but two other types of singularities. The latter are characterized by shifts along the surface and along the Maxwell gauge group acquired as one winds around near the surface in a metric-orthogonal and connection-horizontal manner. We first study this enlarged class of codimension-two singularities in generality and propose an action for singular configurations. We then incorporate these configurations into the path integral calculation of the partition function, focusing on three-dimensional spacetimes to simplify the treatment of angular momentum.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)180.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)180","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
It has previously been shown how the gravitational thermal partition function can be obtained from a Lorentzian path integral. Unlike the Euclidean case, the integration contour over Lorentzian metrics is not immediately ruled out by the conformal factor problem. One can then ask whether this contour can be deformed to pick up nontrivial contributions from various saddle points. In Einstein-Maxwell theory, we argue that the relevance of each black hole saddle to the thermal partition function depends on its thermodynamic stability against variations in energy, angular momentum, and charge. The argument involves consideration of constrained saddles where area and quantities associated with angular momentum and charge are fixed on a codimension-two surface. Consequently, this surface possesses not only a conical singularity, but two other types of singularities. The latter are characterized by shifts along the surface and along the Maxwell gauge group acquired as one winds around near the surface in a metric-orthogonal and connection-horizontal manner. We first study this enlarged class of codimension-two singularities in generality and propose an action for singular configurations. We then incorporate these configurations into the path integral calculation of the partition function, focusing on three-dimensional spacetimes to simplify the treatment of angular momentum.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).