Majority voting for low power and low complexity preamble detection by hybrid memristor-CMOS architecture

IF 1.4 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ehsan Kalanaki, Behzad Ebrahimi, Mohammad Ali Pourmina
{"title":"Majority voting for low power and low complexity preamble detection by hybrid memristor-CMOS architecture","authors":"Ehsan Kalanaki,&nbsp;Behzad Ebrahimi,&nbsp;Mohammad Ali Pourmina","doi":"10.1007/s10470-025-02413-0","DOIUrl":null,"url":null,"abstract":"<div><p>In modern embedded systems, efficient and low-power communication is essential, especially as these systems increasingly handle concurrent wireless protocols. Preamble detection is a critical step in synchronizing received signals after demodulation, yet traditional methods—such as correlation and Hamming distance techniques—suffer from high power consumption and computational complexity. To address these challenges, this paper proposes a novel majority voting-based pattern recognition method that enhances detection accuracy while reducing energy consumption. By leveraging majority voting, our approach mitigates noise effects and improves signal robustness, enabling more efficient preamble detection across varying signal-to-noise ratios (SNRs). The proposed method is implemented in both CMOS-based and hybrid memristor-CMOS architectures, where the hybrid design incorporates dedicated complementary circuits to further optimize power efficiency and reduce silicon area utilization. Unlike conventional CMOS-only implementations, our hybrid approach reduces redundant computations and enhances energy efficiency, making it well-suited for resource-constrained applications. Performance evaluation demonstrates significant improvements over existing techniques, highlighting the potential of memristor-CMOS hybrid technology in low-power, high-speed communication systems.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"124 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02413-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In modern embedded systems, efficient and low-power communication is essential, especially as these systems increasingly handle concurrent wireless protocols. Preamble detection is a critical step in synchronizing received signals after demodulation, yet traditional methods—such as correlation and Hamming distance techniques—suffer from high power consumption and computational complexity. To address these challenges, this paper proposes a novel majority voting-based pattern recognition method that enhances detection accuracy while reducing energy consumption. By leveraging majority voting, our approach mitigates noise effects and improves signal robustness, enabling more efficient preamble detection across varying signal-to-noise ratios (SNRs). The proposed method is implemented in both CMOS-based and hybrid memristor-CMOS architectures, where the hybrid design incorporates dedicated complementary circuits to further optimize power efficiency and reduce silicon area utilization. Unlike conventional CMOS-only implementations, our hybrid approach reduces redundant computations and enhances energy efficiency, making it well-suited for resource-constrained applications. Performance evaluation demonstrates significant improvements over existing techniques, highlighting the potential of memristor-CMOS hybrid technology in low-power, high-speed communication systems.

Abstract Image

基于记忆电阻器- cmos混合结构的低功耗低复杂度前置检测
在现代嵌入式系统中,高效和低功耗通信是必不可少的,特别是当这些系统越来越多地处理并发无线协议时。前导检测是解调后同步接收信号的关键步骤,但传统的方法(如相关和汉明距离技术)存在高功耗和计算复杂性的问题。为了解决这些问题,本文提出了一种新的基于多数投票的模式识别方法,该方法在提高检测精度的同时降低了能耗。通过利用多数投票,我们的方法减轻了噪声影响,提高了信号鲁棒性,在不同的信噪比(SNRs)中实现了更有效的前置检测。所提出的方法可在基于cmos和混合忆阻器- cmos架构中实现,其中混合设计包含专用互补电路,以进一步优化功率效率并降低硅面积利用率。与传统的cmos实现不同,我们的混合方法减少了冗余计算并提高了能源效率,使其非常适合资源受限的应用。性能评估表明,与现有技术相比,该技术有了显著的改进,突出了忆阻器- cmos混合技术在低功耗、高速通信系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信